def gen_example(self, data_dic): if cfg.TRAIN.NET_G == '': print('Error: the path for morels is not found!') else: # Build and load the generator text_encoder = \ BERT_RNN_ENCODER(self.n_words, nhidden=cfg.TEXT.EMBEDDING_DIM) state_dict = \ torch.load(cfg.TRAIN.NET_E, map_location=lambda storage, loc: storage) text_encoder.load_state_dict(state_dict) print('Load text encoder from:', cfg.TRAIN.NET_E) text_encoder = text_encoder.cuda() text_encoder.eval() # the path to save generated images if cfg.GAN.B_DCGAN: netG = G_DCGAN() else: netG = G_NET() s_tmp = cfg.TRAIN.NET_G[:cfg.TRAIN.NET_G.rfind('.pth')] model_dir = cfg.TRAIN.NET_G state_dict = \ torch.load(model_dir, map_location=lambda storage, loc: storage) netG.load_state_dict(state_dict) print('Load G from: ', model_dir) netG.cuda() netG.eval() for key in data_dic: save_dir = '%s/%s' % (s_tmp, key) mkdir_p(save_dir) captions, cap_lens, sorted_indices = data_dic[key] batch_size = captions.shape[0] nz = cfg.GAN.Z_DIM captions = Variable(torch.from_numpy(captions), volatile=True) cap_lens = Variable(torch.from_numpy(cap_lens), volatile=True) captions = captions.cuda() cap_lens = cap_lens.cuda() for i in range(1): # 16 noise = Variable(torch.FloatTensor(batch_size, nz), volatile=True) noise = noise.cuda() ####################################################### # (1) Extract text embeddings ###################################################### hidden = text_encoder.init_hidden(batch_size) # words_embs: batch_size x nef x seq_len # sent_emb: batch_size x nef words_embs, sent_emb = text_encoder( captions, cap_lens, hidden) mask = (captions == 0) ####################################################### # (2) Generate fake images ###################################################### noise.data.normal_(0, 1) fake_imgs, attention_maps, _, _ = netG( noise, sent_emb, words_embs, mask) # G attention cap_lens_np = cap_lens.cpu().data.numpy() for j in range(batch_size): save_name = '%s/%d_s_%d' % (save_dir, i, sorted_indices[j]) for k in range(len(fake_imgs)): im = fake_imgs[k][j].data.cpu().numpy() im = (im + 1.0) * 127.5 im = im.astype(np.uint8) # print('im', im.shape) im = np.transpose(im, (1, 2, 0)) # print('im', im.shape) im = Image.fromarray(im) fullpath = '%s_g%d.png' % (save_name, k) im.save(fullpath) for k in range(len(attention_maps)): if len(fake_imgs) > 1: im = fake_imgs[k + 1].detach().cpu() else: im = fake_imgs[0].detach().cpu() attn_maps = attention_maps[k] att_sze = attn_maps.size(2) img_set, sentences = \ build_super_images2(im[j].unsqueeze(0), captions[j].unsqueeze(0), [cap_lens_np[j]], self.ixtoword, [attn_maps[j]], att_sze) if img_set is not None: im = Image.fromarray(img_set) fullpath = '%s_a%d.png' % (save_name, k) im.save(fullpath)
def sampling(self, split_dir): if cfg.TRAIN.NET_G == '': print('Error: the path for morels is not found!') else: if split_dir == 'test': split_dir = 'valid' # Build and load the generator if cfg.GAN.B_DCGAN: netG = G_DCGAN() else: netG = G_NET() netG.apply(weights_init) netG.cuda() netG.eval() # text_encoder = BERT_RNN_ENCODER(self.n_words, nhidden=cfg.TEXT.EMBEDDING_DIM) state_dict = \ torch.load(cfg.TRAIN.NET_E, map_location=lambda storage, loc: storage) text_encoder.load_state_dict(state_dict) print('Load text encoder from:', cfg.TRAIN.NET_E) text_encoder = text_encoder.cuda() text_encoder.eval() batch_size = self.batch_size nz = cfg.GAN.Z_DIM noise = Variable(torch.FloatTensor(batch_size, nz), volatile=True) noise = noise.cuda() model_dir = cfg.TRAIN.NET_G state_dict = \ torch.load(model_dir, map_location=lambda storage, loc: storage) # state_dict = torch.load(cfg.TRAIN.NET_G) netG.load_state_dict(state_dict) print('Load G from: ', model_dir) # the path to save generated images s_tmp = model_dir[:model_dir.rfind('.pth')] save_dir = '%s/%s' % (s_tmp, split_dir) mkdir_p(save_dir) cnt = 0 for _ in range(1): # (cfg.TEXT.CAPTIONS_PER_IMAGE): for step, data in enumerate(self.data_loader, 0): cnt += batch_size if step % 100 == 0: print('step: ', step) # if step > 50: # break imgs, captions, cap_lens, class_ids, keys = prepare_data( data) hidden = text_encoder.init_hidden(batch_size) # words_embs: batch_size x nef x seq_len # sent_emb: batch_size x nef words_embs, sent_emb = text_encoder( captions, cap_lens, hidden) words_embs, sent_emb = words_embs.detach( ), sent_emb.detach() mask = (captions == 0) num_words = words_embs.size(2) if mask.size(1) > num_words: mask = mask[:, :num_words] ####################################################### # (2) Generate fake images ###################################################### noise.data.normal_(0, 1) fake_imgs, _, _, _ = netG(noise, sent_emb, words_embs, mask) for j in range(batch_size): s_tmp = '%s/single/%s' % (save_dir, keys[j]) folder = s_tmp[:s_tmp.rfind('/')] if not os.path.isdir(folder): print('Make a new folder: ', folder) mkdir_p(folder) k = -1 # for k in range(len(fake_imgs)): im = fake_imgs[k][j].data.cpu().numpy() # [-1, 1] --> [0, 255] im = (im + 1.0) * 127.5 im = im.astype(np.uint8) im = np.transpose(im, (1, 2, 0)) im = Image.fromarray(im) fullpath = '%s_s%d.png' % (s_tmp, k) im.save(fullpath)
def generate_fake_images_with_incremental_noise(self, data_dic, sizeim): global text_encoder_path, net_G_path print(os.getcwd(), os.path.join(os.getcwd(), text_encoder_path)) text_encoder_path = os.path.join(os.getcwd(), text_encoder_path) net_G_path = os.path.join(os.getcwd(), net_G_path) # Build and load the generator ##################################### ## load the encoder # ##################################### print('Loading text encoder from:', text_encoder_path) text_encoder = \ BERT_RNN_ENCODER(self.n_words, nhidden=cfg.TEXT.EMBEDDING_DIM) state_dict = \ torch.load(text_encoder_path, map_location=lambda storage, loc: storage) text_encoder.load_state_dict(state_dict) print('Loaded text encoder from:', text_encoder_path) text_encoder.eval() text_encoder = text_encoder.cuda() netG = G_NET() ###################################### ## load the generator # ###################################### state_dict = \ torch.load(net_G_path, map_location=lambda storage, loc: storage) netG.load_state_dict(state_dict) print('Load Generator from: ', net_G_path) s_tmp = net_G_path[:net_G_path.rfind('.pth')] netG.cuda() netG.eval() for key in data_dic: save_dir = '%s/%s' % ('res', key) mkdir_p(save_dir) captions, cap_lens, sorted_indices = data_dic[key] batch_size = captions.shape[0] nz = cfg.GAN.Z_DIM captions = Variable(torch.from_numpy(captions)) cap_lens = Variable(torch.from_numpy(cap_lens)) captions = captions.cuda() cap_lens = cap_lens.cuda() base_noise = Variable(torch.FloatTensor(batch_size, nz)) base_noise = base_noise.cuda() for i in range(sizeim): # number of images to be created noise = base_noise.clone() noise[0][i % 100] = base_noise[0][i % 100] + torch.mean(base_noise) ####################################################### # (1) Extract text embeddings ###################################################### hidden = text_encoder.init_hidden(batch_size) # words_embs: batch_size x nef x seq_len # sent_emb: batch_size x nef words_embs, sent_emb = text_encoder(captions, cap_lens, hidden) mask = (captions == 0) ####################################################### # (2) Generate fake images ###################################################### noise.data.normal_(0, 1) fake_imgs, attention_maps, _, _ = netG(noise, sent_emb, words_embs, mask) im = fake_imgs[2].squeeze(0).data.cpu().numpy() im = (im + 1.0) * 127.5 im = im.astype(np.uint8) # print('im', im.shape) im = np.transpose(im, (1, 2, 0)) # print('im', im.shape) im = Image.fromarray(im) fullpath = os.path.join(save_dir, '{0}.png'.format(i)) im.save(fullpath)
def build_models(self): # ###################encoders######################################## # if cfg.TRAIN.NET_E == '': print('Error: no pretrained text-image encoders') return image_encoder = BERT_CNN_ENCODER_RNN_DECODER(cfg.TEXT.EMBEDDING_DIM, cfg.CNN_RNN.HIDDEN_DIM, self.n_words, rec_unit=cfg.RNN_TYPE) img_encoder_path = cfg.TRAIN.NET_E.replace('text_encoder', 'image_encoder') state_dict = \ torch.load(img_encoder_path, map_location=lambda storage, loc: storage) image_encoder.load_state_dict(state_dict) for p in image_encoder.parameters(): p.requires_grad = False print('Load image encoder from:', img_encoder_path) # image_encoder.eval() text_encoder = \ BERT_RNN_ENCODER(self.n_words, nhidden=cfg.TEXT.EMBEDDING_DIM) state_dict = \ torch.load(cfg.TRAIN.NET_E, map_location=lambda storage, loc: storage) text_encoder.load_state_dict(state_dict) for p in text_encoder.parameters(): p.requires_grad = False print('Load text encoder from:', cfg.TRAIN.NET_E) text_encoder.eval() # #######################generator and discriminators############## # netsD = [] if cfg.GAN.B_DCGAN: if cfg.TREE.BRANCH_NUM == 1: from model import D_NET64 as D_NET elif cfg.TREE.BRANCH_NUM == 2: from model import D_NET128 as D_NET else: # cfg.TREE.BRANCH_NUM == 3: from model import D_NET256 as D_NET # TODO: elif cfg.TREE.BRANCH_NUM > 3: netG = G_DCGAN() netsD = [D_NET(b_jcu=False)] else: from model import D_NET64, D_NET128, D_NET256 netG = G_NET() if cfg.TREE.BRANCH_NUM > 0: netsD.append(D_NET64()) if cfg.TREE.BRANCH_NUM > 1: netsD.append(D_NET128()) if cfg.TREE.BRANCH_NUM > 2: netsD.append(D_NET256()) # TODO: if cfg.TREE.BRANCH_NUM > 3: netG.apply(weights_init) # print(netG) for i in range(len(netsD)): netsD[i].apply(weights_init) # print(netsD[i]) print('# of netsD', len(netsD)) # epoch = 0 if cfg.TRAIN.NET_G != '': state_dict = \ torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage) netG.load_state_dict(state_dict) print('Load G from: ', cfg.TRAIN.NET_G) istart = cfg.TRAIN.NET_G.rfind('_') + 1 iend = cfg.TRAIN.NET_G.rfind('.') epoch = cfg.TRAIN.NET_G[istart:iend] epoch = int(epoch) + 1 if cfg.TRAIN.B_NET_D: Gname = cfg.TRAIN.NET_G for i in range(len(netsD)): s_tmp = Gname[:Gname.rfind('/')] Dname = '%s/netD%d.pth' % (s_tmp, i) print('Load D from: ', Dname) state_dict = \ torch.load(Dname, map_location=lambda storage, loc: storage) netsD[i].load_state_dict(state_dict) # ########################################################### # if cfg.CUDA: text_encoder = text_encoder.cuda() image_encoder = image_encoder.cuda() netG.cuda() for i in range(len(netsD)): netsD[i].cuda() return [text_encoder, image_encoder, netG, netsD, epoch]
def generate_fake_im(self, data_dic): global text_encoder_path, net_G_path # Build and load the generator ##################################### ## load the encoder # ##################################### text_encoder = \ BERT_RNN_ENCODER(self.n_words, nhidden=cfg.TEXT.EMBEDDING_DIM) state_dict = \ torch.load(text_encoder_path, map_location=lambda storage, loc: storage) text_encoder.load_state_dict(state_dict) print('Loaded text encoder from:', text_encoder_path) text_encoder.eval() text_encoder = text_encoder.cuda() netG = G_NET() ###################################### ## load the generator # ###################################### state_dict = \ torch.load(net_G_path, map_location=lambda storage, loc: storage) netG.load_state_dict(state_dict) print('Load Generator from: ', net_G_path) s_tmp = net_G_path[:net_G_path.rfind('.pth')] netG.cuda() netG.eval() for key in data_dic: save_dir = '%s/%s' % (s_tmp, key) mkdir_p(save_dir) captions, cap_lens, sorted_indices = data_dic[key] batch_size = captions.shape[0] nz = cfg.GAN.Z_DIM captions = Variable(torch.from_numpy(captions)) cap_lens = Variable(torch.from_numpy(cap_lens)) captions = captions.cuda() cap_lens = cap_lens.cuda() for i in range(1): # 16 noise = Variable(torch.FloatTensor(batch_size, nz)) noise = noise.cuda() ####################################################### # (1) Extract text embeddings ###################################################### hidden = text_encoder.init_hidden(batch_size) # words_embs: batch_size x nef x seq_len # sent_emb: batch_size x nef words_embs, sent_emb = text_encoder(captions, cap_lens, hidden) mask = (captions == 0) ####################################################### # (2) Generate fake images ###################################################### noise.data.normal_(0, 1) fake_imgs, attention_maps, _, _ = netG(noise, sent_emb, words_embs, mask) return fake_imgs, attention_maps