class Trainer(object): def __init__(self, config): self.config = config self.data_processor = DataProcessor("/Users/a5560648/workspace/tutor/data", max_len=config["max_len"]) self.model = BertClassifier(config=config) def train(self): data_loader = DataLoader(self.data_processor.get_dataset(), batch_size=config["batch_size"], shuffle=True, drop_last=True) optimizer = torch.optim.Adam(self.model.parameters(), lr=self.config["lr"]) loss_fn = torch.nn.functional.cross_entropy for epoch in range(self.config["epoch"]): with tqdm(total=len(data_loader)) as pbar: for input_ids, token_type_ids, attention_mask, labels in data_loader: optimizer.zero_grad() output = self.model(input_ids, token_type_ids, attention_mask) loss = loss_fn(output, labels) loss.backward() optimizer.step() pbar.update(1)
def main(): args = parse_arguments() # argument setting print("=== Argument Setting ===") print("src: " + args.src) print("tgt: " + args.tgt) print("seed: " + str(args.seed)) print("train_seed: " + str(args.train_seed)) print("model_type: " + str(args.model)) print("max_seq_length: " + str(args.max_seq_length)) print("batch_size: " + str(args.batch_size)) print("pre_epochs: " + str(args.pre_epochs)) print("num_epochs: " + str(args.num_epochs)) print("AD weight: " + str(args.alpha)) print("KD weight: " + str(args.beta)) print("temperature: " + str(args.temperature)) set_seed(args.train_seed) if args.model in ['roberta', 'distilroberta']: tokenizer = RobertaTokenizer.from_pretrained('roberta-base') else: tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') # preprocess data print("=== Processing datasets ===") if args.src in ['blog', 'airline', 'imdb']: src_x, src_y = CSV2Array( os.path.join('data', args.src, args.src + '.csv')) else: src_x, src_y = XML2Array( os.path.join('data', args.src, 'negative.review'), os.path.join('data', args.src, 'positive.review')) src_x, src_test_x, src_y, src_test_y = train_test_split( src_x, src_y, test_size=0.2, stratify=src_y, random_state=args.seed) if args.tgt in ['blog', 'airline', 'imdb']: tgt_x, tgt_y = CSV2Array( os.path.join('data', args.tgt, args.tgt + '.csv')) else: tgt_x, tgt_y = XML2Array( os.path.join('data', args.tgt, 'negative.review'), os.path.join('data', args.tgt, 'positive.review')) tgt_train_x, tgt_test_y, tgt_train_y, tgt_test_y = train_test_split( tgt_x, tgt_y, test_size=0.2, stratify=tgt_y, random_state=args.seed) if args.model in ['roberta', 'distilroberta']: src_features = roberta_convert_examples_to_features( src_x, src_y, args.max_seq_length, tokenizer) src_test_features = roberta_convert_examples_to_features( src_test_x, src_test_y, args.max_seq_length, tokenizer) tgt_features = roberta_convert_examples_to_features( tgt_x, tgt_y, args.max_seq_length, tokenizer) tgt_train_features = roberta_convert_examples_to_features( tgt_train_x, tgt_train_y, args.max_seq_length, tokenizer) else: src_features = convert_examples_to_features(src_x, src_y, args.max_seq_length, tokenizer) src_test_features = convert_examples_to_features( src_test_x, src_test_y, args.max_seq_length, tokenizer) tgt_features = convert_examples_to_features(tgt_x, tgt_y, args.max_seq_length, tokenizer) tgt_train_features = convert_examples_to_features( tgt_train_x, tgt_train_y, args.max_seq_length, tokenizer) # load dataset src_data_loader = get_data_loader(src_features, args.batch_size) src_data_eval_loader = get_data_loader(src_test_features, args.batch_size) tgt_data_train_loader = get_data_loader(tgt_train_features, args.batch_size) tgt_data_all_loader = get_data_loader(tgt_features, args.batch_size) # load models if args.model == 'bert': src_encoder = BertEncoder() tgt_encoder = BertEncoder() src_classifier = BertClassifier() elif args.model == 'distilbert': src_encoder = DistilBertEncoder() tgt_encoder = DistilBertEncoder() src_classifier = BertClassifier() elif args.model == 'roberta': src_encoder = RobertaEncoder() tgt_encoder = RobertaEncoder() src_classifier = RobertaClassifier() else: src_encoder = DistilRobertaEncoder() tgt_encoder = DistilRobertaEncoder() src_classifier = RobertaClassifier() discriminator = Discriminator() if args.load: src_encoder = init_model(args, src_encoder, restore=param.src_encoder_path) src_classifier = init_model(args, src_classifier, restore=param.src_classifier_path) tgt_encoder = init_model(args, tgt_encoder, restore=param.tgt_encoder_path) discriminator = init_model(args, discriminator, restore=param.d_model_path) else: src_encoder = init_model(args, src_encoder) src_classifier = init_model(args, src_classifier) tgt_encoder = init_model(args, tgt_encoder) discriminator = init_model(args, discriminator) # train source model print("=== Training classifier for source domain ===") if args.pretrain: src_encoder, src_classifier = pretrain(args, src_encoder, src_classifier, src_data_loader) # eval source model print("=== Evaluating classifier for source domain ===") evaluate(src_encoder, src_classifier, src_data_loader) evaluate(src_encoder, src_classifier, src_data_eval_loader) evaluate(src_encoder, src_classifier, tgt_data_all_loader) for params in src_encoder.parameters(): params.requires_grad = False for params in src_classifier.parameters(): params.requires_grad = False # train target encoder by GAN print("=== Training encoder for target domain ===") if args.adapt: tgt_encoder.load_state_dict(src_encoder.state_dict()) tgt_encoder = adapt(args, src_encoder, tgt_encoder, discriminator, src_classifier, src_data_loader, tgt_data_train_loader, tgt_data_all_loader) # eval target encoder on lambda0.1 set of target dataset print("=== Evaluating classifier for encoded target domain ===") print(">>> source only <<<") evaluate(src_encoder, src_classifier, tgt_data_all_loader) print(">>> domain adaption <<<") evaluate(tgt_encoder, src_classifier, tgt_data_all_loader)
# model = RNNClassifier(text_field, embedding_dim, hidden_dim, rnn_type="GRU", bidir=False, # checkpoint_name='checkpoints/gru.pt') # in the above line, you can change rnn_type to either RNN_TANH, GRU, or LSTM to create a different network # you can also set bidir=True to create a bidirectional network # model = CNNClassifier(text_field, embedding_dim, num_filters=32, filter_sizes=[1, 2, 3, 5], # checkpoint_name='checkpoints/cnn.pt') tokenizer = transformers.BertTokenizer.from_pretrained('bert-base-uncased', do_lower=True) train_iter, val_iter, test_iter, text_field, label_field = prep_torch_data( batch_size=32, transformer_tokenize=tokenizer) bert = transformers.BertModel.from_pretrained('bert-base-uncased') for i in bert.parameters(): i.requires_grad = False model = BertClassifier(bert, checkpoint_name='checkpoints/bert.pt') optimizer = optim.Adam(model.parameters()) # move everything to gpu if available device = ("cuda" if torch.cuda.is_available() else "cpu") if device == "cuda": model.cuda() torch.set_default_tensor_type('torch.cuda.FloatTensor') train(model, train_iter, val_iter, test_iter, optimizer, criterion, n_epochs=50, short_train=True, checkpoint_name=model.checkpoint_name,
attention_mask['train'], attention_mask['val'], attention_mask[ 'test'] = attention_mask_[:nb_train], attention_mask_[ nb_train:nb_train + nb_val], attention_mask_[-nb_test:] datasets = {} loader = {} for split in ['train', 'val', 'test']: datasets[split] = Data.TensorDataset(input_ids[split], attention_mask[split], label[split]) loader[split] = Data.DataLoader(datasets[split], batch_size=batch_size, shuffle=True) # Training optimizer = th.optim.Adam(model.parameters(), lr=bert_lr) scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[30], gamma=0.1) def train_step(engine, batch): global model, optimizer model.train() model = model.to(gpu) optimizer.zero_grad() (input_ids, attention_mask, label) = [x.to(gpu) for x in batch] optimizer.zero_grad() y_pred = model(input_ids, attention_mask) y_true = label.type(th.long) loss = F.cross_entropy(y_pred, y_true) loss.backward() optimizer.step()
def main(): # 参数设置 batch_size = 4 device = 'cuda' if torch.cuda.is_available() else 'cpu' epochs = 10 learning_rate = 5e-6 #Learning Rate不宜太大 # 获取到dataset train_dataset = CNewsDataset('data/cnews/cnews.train.txt') valid_dataset = CNewsDataset('data/cnews/cnews.val.txt') #test_data = load_data('cnews/cnews.test.txt') # 生成Batch train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, shuffle=False) #test_dataloader = DataLoader(valid_data, batch_size=batch_size, shuffle=False) # 读取BERT的配置文件 bert_config = BertConfig.from_pretrained('bert-base-chinese') num_labels = len(train_dataset.labels) # 初始化模型 model = BertClassifier(bert_config, num_labels).to(device) optimizer = AdamW(model.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() best_acc = 0 for epoch in range(1, epochs + 1): losses = 0 # 损失 accuracy = 0 # 准确率 model.train() train_bar = tqdm(train_dataloader) for input_ids, token_type_ids, attention_mask, label_id in train_bar: model.zero_grad() train_bar.set_description('Epoch %i train' % epoch) output = model( input_ids=input_ids.to(device), attention_mask=attention_mask.to(device), token_type_ids=token_type_ids.to(device), ) loss = criterion(output, label_id.to(device)) losses += loss.item() pred_labels = torch.argmax(output, dim=1) # 预测出的label acc = torch.sum(pred_labels == label_id.to(device)).item() / len( pred_labels) #acc accuracy += acc loss.backward() optimizer.step() train_bar.set_postfix(loss=loss.item(), acc=acc) average_loss = losses / len(train_dataloader) average_acc = accuracy / len(train_dataloader) print('\tTrain ACC:', average_acc, '\tLoss:', average_loss) # 验证 model.eval() losses = 0 # 损失 accuracy = 0 # 准确率 valid_bar = tqdm(valid_dataloader) for input_ids, token_type_ids, attention_mask, label_id in valid_bar: valid_bar.set_description('Epoch %i valid' % epoch) output = model( input_ids=input_ids.to(device), attention_mask=attention_mask.to(device), token_type_ids=token_type_ids.to(device), ) loss = criterion(output, label_id.to(device)) losses += loss.item() pred_labels = torch.argmax(output, dim=1) # 预测出的label acc = torch.sum(pred_labels == label_id.to(device)).item() / len( pred_labels) #acc accuracy += acc valid_bar.set_postfix(loss=loss.item(), acc=acc) average_loss = losses / len(valid_dataloader) average_acc = accuracy / len(valid_dataloader) print('\tValid ACC:', average_acc, '\tLoss:', average_loss) if average_acc > best_acc: best_acc = average_acc torch.save(model.state_dict(), 'models/best_model.pkl')
train_dataset = EmojiDataset('../../data/train_bert_sentences.npy', '../../data/train_bert_labels.npy') train_dataloader = DataLoader(train_dataset, batch_size=64, shuffle=False, collate_fn=collate_fn) test_dataset = EmojiDataset('../../data/test_bert_sentences.npy', '../../data/test_bert_labels.npy') test_dataloader = DataLoader(test_dataset, batch_size=128, shuffle=False, collate_fn=collate_fn) optimizer = AdamW(model.parameters(), lr=2e-5, correct_bias=False) # optimizer = nn.DataParallel(optimizer) total_steps = len(train_dataloader) * epochs # scheduler = get_linear_schedule_with_warmup( # optimizer, # num_warmup_steps = 0, # num_training_steps = total_steps # ) scheduler = get_constant_schedule_with_warmup( optimizer, num_warmup_steps=1000, ) for epoch in range(epochs):
def main(paras): logger = logging.getLogger(__name__) if paras.save_log_file: logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=paras.logging_level, filename=f'{paras.log_save_path}/{paras.train_log_file}', filemode='w') else: logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=paras.logging_level, ) device = 'cuda' if torch.cuda.is_available() else 'cpu' logger.info(f'Loading model: {paras.model_name}') tokenizer = BertTokenizer.from_pretrained(paras.model_name) bert = BertModel.from_pretrained(paras.model_name) train_dataset = RE_Dataset(paras, 'train') train_dataloaer = DataLoader(train_dataset, batch_size=paras.batch_size, shuffle=paras.shuffle, drop_last=paras.drop_last) label_to_index = train_dataset.label_to_index special_token_list = list(train_dataset.special_token_set) # fixme: add special token to tokenizer special_tokens_dict = {'additional_special_tokens': special_token_list} tokenizer.add_special_tokens(special_tokens_dict) # bert.resize_token_embeddings(len(tokenizer)) test_dataset = RE_Dataset(paras, 'test') test_dataloader = DataLoader(test_dataset, batch_size=paras.batch_size, shuffle=paras.shuffle, drop_last=paras.drop_last) bert_classifier = BertClassifier(bert, paras.hidden_size, paras.label_number, paras.dropout_prob) if paras.optimizer == 'adam': logger.info('Loading Adam optimizer.') optimizer = torch.optim.Adam(bert_classifier.parameters(), lr=paras.learning_rate) elif paras.optimizer == 'adamw': logger.info('Loading AdamW optimizer.') no_decay = [ 'bias', 'LayerNorm.weight' ] optimizer_grouped_parameters = [ {'params': [ p for n, p in bert_classifier.named_parameters() if not any(nd in n for nd in no_decay) ], 'weight_decay': 0.01}, {'params': [ p for n, p in bert_classifier.named_parameters() if any(nd in n for nd in no_decay) ], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=paras.learning_rate, eps=args.adam_epsilon) else: logger.warning(f'optimizer must be "Adam" or "AdamW", but got {paras.optimizer}.') logger.info('Loading Adam optimizer.') optimizer = torch.optim.Adam(bert_classifier.parameters(), lr=paras.learning_rate) logger.info('Training Start.') best_eval = {'acc': 0, 'precision': 0, 'recall': 0, 'f1': 0, 'loss': 0} for epoch in range(paras.num_train_epochs): epoch_loss = 0 bert_classifier.train() for step, batch in enumerate(train_dataloaer): optimizer.zero_grad() batch_data, batch_label = batch encoded_data = tokenizer(batch_data, padding=True, truncation=True, return_tensors='pt', max_length=paras.max_sequence_length) label_tensor = batch_label_to_idx(batch_label, label_to_index) loss = bert_classifier(encoded_data, label_tensor) epoch_loss += loss_to_int(loss) logging.info(f'epoch: {epoch}, step: {step}, loss: {loss:.4f}') # fixme: del # acc, precision, recall, f1 = evaluation(bert_classifier, tokenizer, test_dataloader, # paras.max_sequence_length, label_to_index) # logger.info(f'Accuracy: {acc:.4f}, Precision: {precision:.4f}, ' # f'Recall: {recall:.4f}, F1-score: {f1:.4f}') loss.backward() optimizer.step() epoch_loss = epoch_loss / len(train_dataloaer) acc, precision, recall, f1 = evaluation(bert_classifier, tokenizer, test_dataloader, paras.max_sequence_length, label_to_index) logging.info(f'Epoch: {epoch}, Epoch-Average Loss: {epoch_loss:.4f}') logger.info(f'Accuracy: {acc:.4f}, Precision: {precision:.4f}, ' f'Recall: {recall:.4f}, F1-score: {f1:.4f}') if best_eval['loss'] == 0 or f1 > best_eval['f1']: best_eval['loss'] = epoch_loss best_eval['acc'] = acc best_eval['precision'] = precision best_eval['recall'] = recall best_eval['f1'] = f1 torch.save(bert_classifier, f'{paras.log_save_path}/{paras.model_save_name}') with open(f'{paras.log_save_path}/{paras.checkpoint_file}', 'w') as wf: wf.write(f'Save time: {time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())}\n') wf.write(f'Best F1-score: {best_eval["f1"]:.4f}\n') wf.write(f'Precision: {best_eval["precision"]:.4f}\n') wf.write(f'Recall: {best_eval["recall"]:.4f}\n') wf.write(f'Accuracy: {best_eval["acc"]:.4f}\n') wf.write(f'Epoch-Average Loss: {best_eval["loss"]:.4f}\n') logger.info(f'Updated model, best F1-score: {best_eval["f1"]:.4f}\n') logger.info(f'Train complete, Best F1-score: {best_eval["f1"]:.4f}.')
def train(dataloader, head_trans, body_trans, classifier, load_model=False, save_model=True, num_epochs=2): torch.backends.cudnn.benchmark = True # device = 'cuda' if torch.cuda.is_available() else 'cpu' device = 'cpu' print(device) load_model = load_model save_model = save_model learning_rate = 3e-3 num_epochs = num_epochs # For tensorboard writer = SummaryWriter('runs/bert') step = 0 # Initialize Model model = BertClassifier(head_trans, body_trans, classifier).to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) if load_model: model, optimizer, step = load_checkpoint( torch.load('bert_chkpnt/my_checkpoint.pth.tar'), model, optimizer) return model for epoch in range(num_epochs): if save_model: checkpoint = { 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), 'step': step } save_checkpoint(checkpoint) loop = tqdm(enumerate(dataloader), total=len(dataloader), leave=False) for batch, (head, body, stance) in loop: outputs = model(head.to(device), body.to(device)) breakpoint() loss = criterion(outputs.float(), stance.to(device).long()) writer.add_scalar('Training Loss', loss.item(), step) step += 1 optimizer.zero_grad() loss.backward() optimizer.step() # Update progress bar loop.set_description(f'Epoch [{epoch+1}/{num_epochs}]') loop.set_postfix(loss=loss.item()) running_loss += loss.item() running_accuracy += ( (torch.argmax(outputs, dim=1) == stance.to(device)).sum().item()) / BATCH_SIZE if (batch + 1) % 10 == 0: writer.add_scalar('Running Loss', running_loss / 10, epoch * len(dataloader) + batch) writer.add_scalar('Running Accuracy', running_accuracy / 10, epoch * len(dataloader) + batch) running_loss = 0.0 running_accuracy = 0 return model
def main(): device = torch.device('cuda:3') # 获取到dataset print('加载训练数据') train_data = load_data('dataset/train.csv') print('加载验证数据') valid_data = load_data('dataset/test.csv') # test_data = load_data('cnews/cnews.test.txt') batch_size = 16 # 生成Batch print('生成batch') train_dataloader = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=3) valid_dataloader = DataLoader(valid_data, batch_size=batch_size, shuffle=False, num_workers=3) # test_dataloader = DataLoader(valid_data, batch_size=batch_size, shuffle=False) # 读取BERT的配置文件 bert_config = BertConfig.from_pretrained('./chinese_wwm_pytorch') bert_config.num_labels = num_labels print(bert_config) # 初始化模型 model = BertClassifier(bert_config) # model.to(device) # 参数设置 EPOCHS = 20 learning_rate = 5e-6 # Learning Rate不宜太大 optimizer = AdamW(model.parameters(), lr=learning_rate) # 损失函数采用交叉熵 criterion = nn.CrossEntropyLoss() with open('output.txt', 'w') as wf: wf.write('Batch Size: ' + str(batch_size) + '\tLearning Rate: ' + str(learning_rate) + '\n') best_acc = 0 # 设置并行训练,模型默认是把参数放在device[0]对应的gpu编号的gpu上,所以这里应该和上面设置的cuda:2对应 net = torch.nn.DataParallel(model, device_ids=[3, 4]) net.to(device) # model.module.avgpool = nn.AdaptiveAvgPool2d(7) # 开始训练 for Epoch in range(1, EPOCHS + 1): losses = 0 # 损失 accuracy = 0 # 准确率 print('Epoch:', Epoch) model.train() for batch_index, batch in enumerate(train_dataloader): # print(batch_index) # print(batch) input_ids = batch[0].to(device) attention_mask = batch[1].to(device) token_type_ids = batch[2].to(device) label_ids = batch[3].to(device) # 将三个输入喂到模型中 output = net( # forward input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, ) loss = criterion(output, label_ids) losses += loss.item() pred_labels = torch.argmax(output, dim=1) # 预测出的label acc = torch.sum(pred_labels == label_ids.to(device)).item() / len( pred_labels) # acc accuracy += acc # 打印训练过程中的准确率以及loss # print('Epoch: %d | Train: | Batch: %d / %d | Acc: %f | Loss: %f' % (Epoch, batch_index + 1, len(train_dataloader), acc, loss.item())) # 模型梯度置零,损失函数反向传播,优化更新 model.zero_grad() loss.backward() optimizer.step() # torch.cuda.empty_cache() average_loss = losses / len(train_dataloader) average_acc = accuracy / len(train_dataloader) # 打印该epoch训练结果的 print('\tTrain ACC:', average_acc, '\tLoss:', average_loss) # with open('output.txt', 'a') as rf: # output_to_file = '\nEpoch: ' + str(Epoch) + '\tTrain ACC:' + str(average_acc) + '\tLoss: ' + str( # average_loss) # rf.write(output_to_file) # 验证 model.eval() losses = 0 # 损失 accuracy = 0 # 准确率 # 在验证集上进行验证 for batch_index, batch in enumerate(valid_dataloader): input_ids = batch[0].to(device) attention_mask = batch[1].to(device) token_type_ids = batch[2].to(device) label_ids = batch[3].to(device) with torch.no_grad(): output = model( # forward input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, ) loss = criterion(output, label_ids) losses += loss.item() # 这里的两部操作都是直接对生成的结果张量进行操作 pred_labels = torch.argmax(output, dim=1) # 预测出的label acc = torch.sum(pred_labels == label_ids.to(device)).item() / len( pred_labels) # acc accuracy += acc average_loss = losses / len(valid_dataloader) average_acc = accuracy / len(valid_dataloader) print('\tValid ACC:', average_acc, '\tLoss:', average_loss) # with open('output.txt', 'a') as rf: # output_to_file = '\nEpoch: ' + str(Epoch) + '\tValid ACC:' + str(average_acc) + '\tLoss: ' + str( # average_loss) + '\n' # rf.write(output_to_file) if average_acc > best_acc: best_acc = average_acc torch.save(model.state_dict(), 'best_model_on_trainset.pkl')
def main(args, f): # args = parse_arguments() set_seed(args.train_seed) if args.model in ['roberta', 'distilroberta']: tokenizer = RobertaTokenizer.from_pretrained('roberta-base') else: tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') # preprocess data src_eval_loader, src_loader, tgt_all_loader, tgt_train_loader = get_all_dataloader( args, tokenizer) # load models if args.model == 'bert': src_encoder = BertEncoder() tgt_encoder = BertEncoder() src_classifier = BertClassifier() elif args.model == 'distilbert': src_encoder = DistilBertEncoder() tgt_encoder = DistilBertEncoder() src_classifier = BertClassifier() elif args.model == 'roberta': src_encoder = RobertaEncoder() tgt_encoder = RobertaEncoder() src_classifier = RobertaClassifier() else: src_encoder = DistilRobertaEncoder() tgt_encoder = DistilRobertaEncoder() src_classifier = RobertaClassifier() discriminator = Discriminator() # parallel models if torch.cuda.device_count() > 1: print('Let\'s use {} GPUs!'.format(torch.cuda.device_count())) src_encoder = nn.DataParallel(src_encoder) src_classifier = nn.DataParallel(src_classifier) tgt_encoder = nn.DataParallel(tgt_encoder) discriminator = nn.DataParallel(discriminator) if args.load: src_encoder = init_model(args, src_encoder, restore_path=param.src_encoder_path) src_classifier = init_model(args, src_classifier, restore_path=param.src_classifier_path) # tgt_encoder = init_model(args, tgt_encoder, restore_path=param.tgt_encoder_path) # discriminator = init_model(args, discriminator, restore_path=param.d_model_path) else: src_encoder = init_model(args, src_encoder) src_classifier = init_model(args, src_classifier) tgt_encoder = init_model(args, tgt_encoder) discriminator = init_model(args, discriminator) # train source model if args.pretrain: print("=== Training classifier for source domain ===") src_encoder, src_classifier = pretrain(args, src_encoder, src_classifier, src_loader) # save pretrained model save_model(args, src_encoder, param.src_encoder_path) save_model(args, src_classifier, param.src_classifier_path) # eval source model print("=== Evaluating classifier for source domain ===") evaluate(args, src_encoder, src_classifier, src_loader) src_acc = evaluate(args, src_encoder, src_classifier, tgt_all_loader) f.write(f'{args.src} -> {args.tgt}: No adapt acc on src data: {src_acc}\n') for params in src_encoder.parameters(): params.requires_grad = False for params in src_classifier.parameters(): params.requires_grad = False # adapt print("=== Adapt tgt encoder ===") tgt_encoder.load_state_dict(src_encoder.state_dict()) if args.src_free: s_res_features = src_gmm(args, src_encoder, src_loader) src_loader = s_numpy_dataloader(s_res_features, args.batch_size) tgt_encoder = aad_adapt_src_free(args, src_encoder, tgt_encoder, discriminator, src_classifier, src_loader, tgt_train_loader, tgt_all_loader) else: tgt_encoder = aad_adapt(args, src_encoder, tgt_encoder, discriminator, src_classifier, src_loader, tgt_train_loader, tgt_all_loader) # save_model(args, tgt_encoder, param.tgt_encoder_path) # argument setting # print("=== Argument Setting ===") print( f"model_type: {args.model}; max_seq_len: {args.max_seq_length}; batch_size: {args.batch_size}; " f"pre_epochs: {args.pre_epochs}; num_epochs: {args.num_epochs}; adv weight: {args.alpha}; " f"KD weight: {args.beta}; temperature: {args.temperature}; src: {args.src}; tgt: {args.tgt}; " f'src_free: {args.src_free}; dp: {args.dp}; ent: {args.ent}') # eval target encoder on lambda0.1 set of target dataset print("=== Evaluating classifier for encoded target domain ===") print(">>> domain adaption <<<") tgt_acc = evaluate(args, tgt_encoder, src_classifier, tgt_all_loader) f.write(f'{args.src} -> {args.tgt}: DA acc on tgt data: {tgt_acc}\n') f.write( f"model_type: {args.model}; batch_size: {args.batch_size}; pre_epochs: {args.pre_epochs}; " f"num_epochs: {args.num_epochs}; src_free: {args.src_free}; src: {args.src}; " f"tgt: {args.tgt}; dp: {args.dp}; ent: {args.ent}\n\n")