Esempio n. 1
0
def train(args):
    paddle.set_device(args.device)
    set_seed(102)
    trainer_num = paddle.distributed.get_world_size()
    if trainer_num > 1:
        paddle.distributed.init_parallel_env()
    rank = paddle.distributed.get_rank()

    word_vocab, label_vocab, train_loader, test_loader = create_data_loader(
        args)

    # Define the model netword and its loss
    model = BiGruCrf(args.emb_dim,
                     args.hidden_size,
                     len(word_vocab),
                     len(label_vocab),
                     crf_lr=args.crf_lr)
    # Prepare optimizer, loss and metric evaluator
    optimizer = paddle.optimizer.Adam(learning_rate=args.base_lr,
                                      parameters=model.parameters())
    chunk_evaluator = ChunkEvaluator(label_list=label_vocab.keys(),
                                     suffix=True)

    if args.init_checkpoint:
        if os.path.exists(args.init_checkpoint):
            logger.info("Init checkpoint from %s" % args.init_checkpoint)
            model_dict = paddle.load(args.init_checkpoint)
            model.load_dict(model_dict)
        else:
            logger.info("Cannot init checkpoint from %s which doesn't exist" %
                        args.init_checkpoint)
    logger.info("Start training")
    # Start training
    global_step = 0
    last_step = args.epochs * len(train_loader)
    train_reader_cost = 0.0
    train_run_cost = 0.0
    total_samples = 0
    reader_start = time.time()
    max_f1_score = -1
    for epoch in range(args.epochs):
        for step, batch in enumerate(train_loader):
            train_reader_cost += time.time() - reader_start
            global_step += 1
            token_ids, length, label_ids = batch
            train_start = time.time()
            loss = model(token_ids, length, label_ids)
            avg_loss = paddle.mean(loss)
            train_run_cost += time.time() - train_start
            total_samples += args.batch_size
            if global_step % args.logging_steps == 0:
                logger.info(
                    "global step %d / %d, loss: %f, avg_reader_cost: %.5f sec, avg_batch_cost: %.5f sec, avg_samples: %.5f, ips: %.5f sequences/sec"
                    %
                    (global_step, last_step, avg_loss,
                     train_reader_cost / args.logging_steps,
                     (train_reader_cost + train_run_cost) / args.logging_steps,
                     total_samples / args.logging_steps, total_samples /
                     (train_reader_cost + train_run_cost)))
                train_reader_cost = 0.0
                train_run_cost = 0.0
                total_samples = 0
            avg_loss.backward()
            optimizer.step()
            optimizer.clear_grad()
            if global_step % args.save_steps == 0 or global_step == last_step:
                if rank == 0:
                    paddle.save(
                        model.state_dict(),
                        os.path.join(args.model_save_dir,
                                     "model_%d.pdparams" % global_step))
                    logger.info("Save %d steps model." % (global_step))
                    if args.do_eval:
                        precision, recall, f1_score = evaluate(
                            model, chunk_evaluator, test_loader)
                        if f1_score > max_f1_score:
                            max_f1_score = f1_score
                            paddle.save(
                                model.state_dict(),
                                os.path.join(args.model_save_dir,
                                             "best_model.pdparams"))
                            logger.info("Save best model.")

            reader_start = time.time()
Esempio n. 2
0
def train(args):
    paddle.set_device(args.device)

    # Create dataset.
    train_ds, test_ds = load_dataset(
        datafiles=(os.path.join(args.data_dir, 'train.tsv'),
                   os.path.join(args.data_dir, 'test.tsv')))

    word_vocab = load_vocab(os.path.join(args.data_dir, 'word.dic'))
    label_vocab = load_vocab(os.path.join(args.data_dir, 'tag.dic'))
    # q2b.dic is used to replace DBC case to SBC case
    normlize_vocab = load_vocab(os.path.join(args.data_dir, 'q2b.dic'))

    trans_func = partial(convert_example,
                         max_seq_len=args.max_seq_len,
                         word_vocab=word_vocab,
                         label_vocab=label_vocab,
                         normlize_vocab=normlize_vocab)
    train_ds.map(trans_func)
    test_ds.map(trans_func)

    batchify_fn = lambda samples, fn=Tuple(
        Pad(axis=0, pad_val=0, dtype='int64'),  # word_ids
        Stack(dtype='int64'),  # length
        Pad(axis=0, pad_val=0, dtype='int64'),  # label_ids
    ): fn(samples)

    # Create sampler for dataloader
    train_sampler = paddle.io.DistributedBatchSampler(
        dataset=train_ds,
        batch_size=args.batch_size,
        shuffle=True,
        drop_last=True)
    train_loader = paddle.io.DataLoader(dataset=train_ds,
                                        batch_sampler=train_sampler,
                                        return_list=True,
                                        collate_fn=batchify_fn)

    test_sampler = paddle.io.BatchSampler(dataset=test_ds,
                                          batch_size=args.batch_size,
                                          shuffle=False,
                                          drop_last=False)
    test_loader = paddle.io.DataLoader(dataset=test_ds,
                                       batch_sampler=test_sampler,
                                       return_list=True,
                                       collate_fn=batchify_fn)

    # Define the model netword and its loss
    model = BiGruCrf(args.emb_dim, args.hidden_size, len(word_vocab),
                     len(label_vocab))
    # Prepare optimizer, loss and metric evaluator
    optimizer = paddle.optimizer.Adam(learning_rate=args.base_lr,
                                      parameters=model.parameters())
    chunk_evaluator = ChunkEvaluator(label_list=label_vocab.keys(),
                                     suffix=True)

    if args.init_checkpoint:
        model_dict = paddle.load(args.init_checkpoint)
        model.load_dict(model_dict)

    # Start training
    global_step = 0
    last_step = args.epochs * len(train_loader)
    tic_train = time.time()
    for epoch in range(args.epochs):
        for step, batch in enumerate(train_loader):
            global_step += 1
            token_ids, length, label_ids = batch
            loss = model(token_ids, length, label_ids)
            avg_loss = paddle.mean(loss)
            if global_step % args.logging_steps == 0:
                print("global step %d / %d, loss: %f, speed: %.2f step/s" %
                      (global_step, last_step, avg_loss, args.logging_steps /
                       (time.time() - tic_train)))
                tic_train = time.time()
            avg_loss.backward()
            optimizer.step()
            optimizer.clear_grad()
            if global_step % args.save_steps == 0 or global_step == last_step:
                if paddle.distributed.get_rank() == 0:
                    evaluate(model, chunk_evaluator, test_loader)
                    paddle.save(
                        model.state_dict(),
                        os.path.join(args.model_save_dir,
                                     "model_%d.pdparams" % global_step))
Esempio n. 3
0
def train(args):
    paddle.set_device(args.device)

    trainer_num = paddle.distributed.get_world_size()
    if trainer_num > 1:
        paddle.distributed.init_parallel_env()
    rank = paddle.distributed.get_rank()
    # Create dataset.
    train_ds, test_ds = load_dataset(
        datafiles=(os.path.join(args.data_dir, 'train.tsv'),
                   os.path.join(args.data_dir, 'test.tsv')))

    word_vocab = load_vocab(os.path.join(args.data_dir, 'word.dic'))
    label_vocab = load_vocab(os.path.join(args.data_dir, 'tag.dic'))
    # q2b.dic is used to replace DBC case to SBC case
    normlize_vocab = load_vocab(os.path.join(args.data_dir, 'q2b.dic'))

    trans_func = partial(convert_example,
                         max_seq_len=args.max_seq_len,
                         word_vocab=word_vocab,
                         label_vocab=label_vocab,
                         normlize_vocab=normlize_vocab)
    train_ds.map(trans_func)
    test_ds.map(trans_func)

    batchify_fn = lambda samples, fn=Tuple(
        Pad(axis=0, pad_val=word_vocab.get("[PAD]", 0), dtype='int64'
            ),  # word_ids
        Stack(dtype='int64'),  # length
        Pad(axis=0, pad_val=label_vocab.get("O", 0), dtype='int64'
            ),  # label_ids
    ): fn(samples)

    # Create sampler for dataloader
    train_sampler = paddle.io.DistributedBatchSampler(
        dataset=train_ds,
        batch_size=args.batch_size,
        shuffle=True,
        drop_last=True)
    train_loader = paddle.io.DataLoader(dataset=train_ds,
                                        batch_sampler=train_sampler,
                                        return_list=True,
                                        collate_fn=batchify_fn)

    test_sampler = paddle.io.BatchSampler(dataset=test_ds,
                                          batch_size=args.batch_size,
                                          shuffle=False,
                                          drop_last=False)
    test_loader = paddle.io.DataLoader(dataset=test_ds,
                                       batch_sampler=test_sampler,
                                       return_list=True,
                                       collate_fn=batchify_fn)

    # Define the model netword and its loss
    model = BiGruCrf(args.emb_dim,
                     args.hidden_size,
                     len(word_vocab),
                     len(label_vocab),
                     crf_lr=args.crf_lr)
    # Prepare optimizer, loss and metric evaluator
    optimizer = paddle.optimizer.Adam(learning_rate=args.base_lr,
                                      parameters=model.parameters())
    chunk_evaluator = ChunkEvaluator(label_list=label_vocab.keys(),
                                     suffix=True)

    if args.init_checkpoint:
        if os.path.exists(args.init_checkpoint):
            logger.info("Init checkpoint from %s" % args.init_checkpoint)
            model_dict = paddle.load(args.init_checkpoint)
            model.load_dict(model_dict)
        else:
            logger.info("Cannot init checkpoint from %s which doesn't exist" %
                        args.init_checkpoint)
    logger.info("Start training")
    # Start training
    global_step = 0
    last_step = args.epochs * len(train_loader)
    train_reader_cost = 0.0
    train_run_cost = 0.0
    total_samples = 0
    reader_start = time.time()
    max_f1_score = -1
    for epoch in range(args.epochs):
        for step, batch in enumerate(train_loader):
            train_reader_cost += time.time() - reader_start
            global_step += 1
            token_ids, length, label_ids = batch
            train_start = time.time()
            loss = model(token_ids, length, label_ids)
            avg_loss = paddle.mean(loss)
            train_run_cost += time.time() - train_start
            total_samples += args.batch_size
            if global_step % args.logging_steps == 0:
                logger.info(
                    "global step %d / %d, loss: %f, avg_reader_cost: %.5f sec, avg_batch_cost: %.5f sec, avg_samples: %.5f, ips: %.5f sequences/sec"
                    %
                    (global_step, last_step, avg_loss,
                     train_reader_cost / args.logging_steps,
                     (train_reader_cost + train_run_cost) / args.logging_steps,
                     total_samples / args.logging_steps, total_samples /
                     (train_reader_cost + train_run_cost)))
                train_reader_cost = 0.0
                train_run_cost = 0.0
                total_samples = 0
            avg_loss.backward()
            optimizer.step()
            optimizer.clear_grad()
            if global_step % args.save_steps == 0 or global_step == last_step:
                if rank == 0:
                    paddle.save(
                        model.state_dict(),
                        os.path.join(args.model_save_dir,
                                     "model_%d.pdparams" % global_step))
                    logger.info("Save %d steps model." % (global_step))
                    if args.do_eval:
                        precision, recall, f1_score = evaluate(
                            model, chunk_evaluator, test_loader)
                        if f1_score > max_f1_score:
                            max_f1_score = f1_score
                            paddle.save(
                                model.state_dict(),
                                os.path.join(args.model_save_dir,
                                             "best_model.pdparams"))
                            logger.info("Save best model.")

            reader_start = time.time()