def train(embedding_dimension, number_of_hidden_layers, hidden_layer_dimension,
          activation_function, number_of_training_epochs, loss_function_choice,
          optimizer_choice, learning_rate):
    train_losses = []
    train_accuracies = []
    validation_accuracies = []
    cbow = CBOW(vocab_size=len(vocab),
                num_classes=len(language_set),
                embedding_dim=embedding_dimension,
                hidden_dim=hidden_layer_dimension,
                number_of_hidden_layers=number_of_hidden_layers,
                activation_function=activation_function)

    for epoch in range(number_of_training_epochs):
        train_losses.append(
            train_epoch(epoch,
                        cbow,
                        X_train,
                        y_train,
                        loss_function=loss_function_choice(),
                        optimizer=optimizer_choice(cbow.parameters(),
                                                   lr=learning_rate)))
        train_accuracies.append(evaluate(cbow, X_train, y_train))
        validation_accuracies.append(evaluate(cbow, X_validation,
                                              y_validation))

    print(f"Training accuracy: {evaluate(cbow, X_train, y_train)}")
    print(f"Validation accuracy: {evaluate(cbow, X_validation, y_validation)}")
    print(f"Test accuracy: {evaluate(cbow, X_test, y_test)}")

    return evaluate(cbow, X_validation, y_validation)
Esempio n. 2
0
def train_cbow():
    losses = []
    loss_fn = nn.NLLLoss()
    model = CBOW(vocab_size, embed_size, CONTEXT_SIZE, hidden_size)
    print(model)
    optimizer = optim.SGD(model.parameters(), lr=learning_rate)

    cbow_train = create_cbow_dataset(text)
    for epoch in range(n_epoch):
        total_loss = .0
        for context, target in cbow_train:
            ctx_idxs = [w2i[w] for w in context]
            ctx_var = Variable(torch.LongTensor(ctx_idxs))

            model.zero_grad()
            log_probs = model(ctx_var)

            loss = loss_fn(log_probs,
                           Variable(torch.LongTensor([w2i[target]])))

            loss.backward()
            optimizer.step()

            total_loss += float(loss)
        losses.append(total_loss)
    return model, losses
Esempio n. 3
0
    def __init__(self,
                 input_file_name,
                 output_file_name,
                 emb_dimension=100,
                 batch_size=100,
                 window_size=5,
                 iteration=5,
                 initial_lr=0.025,
                 min_count=5,
                 using_hs=False,
                 using_neg=False,
                 context_size=2,
                 hidden_size=128,
                 cbow=None,
                 skip_gram=None):

        print("\nInput File loading......\n")
        self.data = InputData(input_file_name, min_count)
        print("\nInput File loaded.\n")
        self.output_file_name = output_file_name
        self.emb_size = len(self.data.word2id)
        self.emb_dimension = emb_dimension
        self.batch_size = batch_size
        self.window_size = window_size
        self.iteration = iteration
        self.initial_lr = initial_lr
        self.context_size = context_size
        self.hidden_size = hidden_size
        self.using_hs = using_hs
        self.using_neg = using_neg
        self.cbow = cbow
        self.skip_gram = skip_gram
        if self.skip_gram is not None and self.skip_gram:
            self.skip_gram_model = SkipGramModel(self.emb_size,
                                                 self.emb_dimension)
            print("skip_gram_model", self.skip_gram_model)
            self.optimizer = optim.SGD(self.skip_gram_model.parameters(),
                                       lr=self.initial_lr)
        if self.cbow is not None and self.cbow:
            self.cbow_model = CBOW(self.emb_size, self.emb_dimension)
            print("CBOW_model", self.cbow_model)
            self.optimizer = optim.SGD(self.cbow_model.parameters(),
                                       lr=self.initial_lr)
Esempio n. 4
0
from utils import *
from model import CBOW
import math
import numpy as np
import six.moves.cPickle as pickle

with open('idx2word.pkl', 'rb') as f:
    idx2word = pickle.load(f)
vocab_size = len(idx2word)
emb_size = 128
[context, target], loss, params = CBOW(vocab_size, emb_size)
load_params("model-1-epoch", params)
embeddings = params[0].get_value()
norm = math.sqrt(np.sum(np.square(embeddings), axis=1, keepdims=True)[0])
normalized_embeddings = embeddings / norm

# Step 6: Visualize the embeddings.


def plot_with_labels(low_dim_embs, labels, filename='tsne.png'):
    assert low_dim_embs.shape[0] >= len(labels), "More labels than embeddings"
    plt.figure(figsize=(18, 18))  #in inches
    for i, label in enumerate(labels):
        x, y = low_dim_embs[i, :]
        plt.scatter(x, y)
        plt.annotate(label,
                     xy=(x, y),
                     xytext=(5, 2),
                     textcoords='offset points',
                     ha='right',
                     va='bottom')
Esempio n. 5
0
data = helper.create_dataset(CONTEXT_SIZE)
train_data, test_data = helper.split_dataset(data, train_ratio)
word_to_ix = helper.create_dictionary()

VOCAB_SIZE = len(word_to_ix)

test_inputs, test_labels = helper.make_batch(test_data, -1)
train_inputs, train_labels = helper.make_batch(train_data, batch_size)

test_inputs = Variable(helper.vectorize_data(test_inputs, word_to_ix),
                       requires_grad=False)
test_labels = Variable(helper.vectorize_data(test_labels, word_to_ix).view(-1),
                       requires_grad=False)

model = CBOW(VOCAB_SIZE, EMB_SIZE)
optimizer = optim.SGD(model.parameters(), lr=lr)
criterion = nn.NLLLoss()

# Before training
print("TESTING BEFORE TRAINING---------")
model.eval()
print('LOSS: ' +
      str(evaluate.eval_loss(model, test_inputs, test_labels, criterion)))
model.zero_grad()

print('TRAINING STARTS------------------')
model.train()

if (load):
    model.load_state_dict(torch.load(save_file)['model'])
Esempio n. 6
0
from tqdm import tqdm

import torch
from torch.autograd import Variable

EMB_DIM = 50

article = get_words()
tokens = check(PreProcessor().clean(article))
# vec_txt = encode(tokens)
x, y = prep_train(tokens)
print("We out here!")
embs, w2x = w2v_dict_to_torch_emb(w2v)
print("Made it!")
cbow = CBOW(len(w2v), EMB_DIM, embs)

loss_function = nn.NLLLoss()
optimizer = torch.optim.SGD(cbow.parameters(), lr=0.001)
print("Almost there!")
# train


# TODO: save model with torch every few epochs
for epoch in range(50):
    losses = []
    total_loss = 0
    for context, target in tqdm(zip(x, y)):
        cbow.zero_grad()
        context = list(map(lambda w: w2x[w], context))
        log_probs = cbow(Variable(torch.LongTensor(context)))
    context = [
        raw_text[i - 2], raw_text[i - 1], raw_text[i + 1], raw_text[i + 2]
    ]
    target = raw_text[i]
    data.append((context, target))
print(data[:5])


def make_context_vector(context, word_to_ix):
    idxs = [word_to_ix[w] for w in context]
    return autograd.Variable(torch.LongTensor(idxs))


losses = []
loss_function = nn.NLLLoss()
model = CBOW(vocab_size, EMBEDDING_DIM, CONTEXT_SIZE)
optimizer = optim.SGD(model.parameters(), lr=0.001)

for epoch in range(10):
    total_loss = torch.Tensor([0])
    for context, target in data:
        # Step 1. Prepare the inputs to be passed to the model (i.e, turn the words
        # into integer indices and wrap them in variables)
        context_var = make_context_vector(context, word_to_ix)

        # Step 2. Recall that torch *accumulates* gradients. Before passing in a
        # new instance, you need to zero out the gradients from the old
        # instance
        model.zero_grad()

        # step 3. Run forward pass
Esempio n. 8
0
# coding:utf-8
from dataset import DataSet
from model import CBOW
from torch import optim
import torch

HIDDEN = 100
LR = 0.001
LOG_EVERY = 10
EPOCH = 4
BATCH = 200
WINDOW = 2
NNEG = 4

if __name__ == '__main__':
    dataset = DataSet(nepoch=EPOCH, nbatch=BATCH, window=WINDOW, nneg=NNEG)
    model = CBOW(dataset.nvocab, 100)
    optimizer = optim.SGD(model.parameters(), lr=0.01)
    for targets, contexts, negtives in dataset:
        optimizer.zero_grad()
        loss = model(targets, contexts, negtives)
        loss.backward()
        optimizer.step()
        if dataset.iter % LOG_EVERY == 0:
            print("[iter %-4d epoch %-2d batch %-3d]  loss %-.3f" %
                  (dataset.iter, dataset.epoch, dataset.batch, loss.data[0]))
    torch.save(model.wordemb, 'data/wordemb.pth')
Esempio n. 9
0
researchName = list(map(lambda x: x.lower(), researchName))
trainingDataRaw = []
for i in range(2, len(researchName) - 2):
  context = [researchName[i-2], researchName[i-1], researchName[i+1], researchName[i+2]]
  target = researchName[i]
  trainingDataRaw.append((context, target))


#### lookup table for vector ####
vocabs = set(researchName)
wordToIndex = { word: i for i, word in enumerate(vocabs) }


#### Model Initialization ####
criterion = nn.NLLLoss()
model = CBOW(len(vocabs), 5, 4)
optimizer = optim.Adam(model.parameters(), lr = 0.01)


#### Training loop ####
for epoch in range(3):
  for context, target in trainingDataRaw:
    contextIdx = torch.tensor([wordToIndex[word] for word in context], dtype=torch.long)
    model.zero_grad()
    output = model(contextIdx)

    loss = criterion(output, torch.tensor([wordToIndex[target]], dtype=torch.long))
    loss.backward()
    optimizer.step()
    print(model.getEmbeddingMatrix(contextIdx))
Esempio n. 10
0
    parser = argparse.ArgumentParser()
    parser.add_argument('--idx2word_file', default='idx2word.pkl', type=str)
    parser.add_argument('--params_file', default='model-1-epoch', type=str)
    parser.add_argument('--emb_size', default=128, type=int)
    parser.add_argument('--eval_data', default='questions-words.txt', type=str)
    args = parser.parse_args()

    emb_size = args.emb_size
    with open(args.idx2word_file, 'rb') as f:
        idx2word = pickle.load(f)
    
    vocab_size = len(idx2word)

    word2idx = dict([(idx2word[idx], idx) for idx in idx2word])

    _, _, params = CBOW(vocab_size, emb_size)
    load_params(args.params_file, params)

    embeddings = params[0]
    norm = T.sqrt(T.sum(T.sqr(embeddings), axis=1, keepdims=True))
    normalized_embeddings = embeddings / norm

    predict = get_analogy_prediction_model(normalized_embeddings, emb_size, vocab_size)    

    """Evaluate analogy questions and reports accuracy."""

    # How many questions we get right at precision@1.
    correct = 0
    analogy_data = read_analogies(args.eval_data, word2idx)
    analogy_questions = analogy_data[:, :3]
    answers = analogy_data[:, 3]
Esempio n. 11
0
class Word2Vec:
    def __init__(self,
                 input_file_name,
                 output_file_name,
                 emb_dimension=100,
                 batch_size=100,
                 window_size=5,
                 iteration=5,
                 initial_lr=0.025,
                 min_count=5,
                 using_hs=False,
                 using_neg=False,
                 context_size=2,
                 hidden_size=128,
                 cbow=None,
                 skip_gram=None):

        print("\nInput File loading......\n")
        self.data = InputData(input_file_name, min_count)
        print("\nInput File loaded.\n")
        self.output_file_name = output_file_name
        self.emb_size = len(self.data.word2id)
        self.emb_dimension = emb_dimension
        self.batch_size = batch_size
        self.window_size = window_size
        self.iteration = iteration
        self.initial_lr = initial_lr
        self.context_size = context_size
        self.hidden_size = hidden_size
        self.using_hs = using_hs
        self.using_neg = using_neg
        self.cbow = cbow
        self.skip_gram = skip_gram
        if self.skip_gram is not None and self.skip_gram:
            self.skip_gram_model = SkipGramModel(self.emb_size,
                                                 self.emb_dimension)
            print("skip_gram_model", self.skip_gram_model)
            self.optimizer = optim.SGD(self.skip_gram_model.parameters(),
                                       lr=self.initial_lr)
        if self.cbow is not None and self.cbow:
            self.cbow_model = CBOW(self.emb_size, self.emb_dimension)
            print("CBOW_model", self.cbow_model)
            self.optimizer = optim.SGD(self.cbow_model.parameters(),
                                       lr=self.initial_lr)

    def skip_gram_train(self):
        """Multiple training.

        Returns:
            None.
        """
        print("Skip_Gram Training......")
        pair_count = self.data.evaluate_pair_count(self.window_size)
        print("pair_count", pair_count)
        batch_count = self.iteration * pair_count / self.batch_size
        print("batch_count", batch_count)
        process_bar = tqdm(range(int(batch_count)))
        self.skip_gram_model.save_embedding(self.data.id2word,
                                            'skip_gram_begin_embedding.txt')
        for i in process_bar:
            pos_pairs = self.data.get_batch_pairs(self.batch_size,
                                                  self.window_size)
            if self.using_hs:
                pos_pairs, neg_pairs = self.data.get_pairs_by_huffman(
                    pos_pairs)
            else:
                pos_pairs, neg_pairs = self.data.get_pairs_by_neg_sampling(
                    pos_pairs, 5)

            pos_u = [int(pair[0]) for pair in pos_pairs]
            pos_v = [int(pair[1]) for pair in pos_pairs]
            neg_u = [int(pair[0]) for pair in neg_pairs]
            neg_v = [int(pair[1]) for pair in neg_pairs]

            self.optimizer.zero_grad()
            loss = self.skip_gram_model.forward(pos_u, pos_v, neg_u, neg_v)
            loss.backward()
            self.optimizer.step()

            process_bar.set_description(
                "Loss: %0.8f, lr: %0.6f" %
                (loss.data[0], self.optimizer.param_groups[0]['lr']))
            print("Loss: %0.8f, lr: %0.6f" %
                  (loss.data[0], self.optimizer.param_groups[0]['lr']))
            if i * self.batch_size % 100000 == 0:
                lr = self.initial_lr * (1.0 - 1.0 * i / batch_count)
                for param_group in self.optimizer.param_groups:
                    param_group['lr'] = lr
        print("Skip_Gram Trained and Saving File......")
        self.skip_gram_model.save_embedding(self.data.id2word,
                                            self.output_file_name)
        print("Skip_Gram Trained and Saved File.")

    def cbow_train(self):
        print("CBOW Training......")
        self.cbow_model.save_embedding(self.data.id2word,
                                       'cbow_begin_embedding.txt')
        pos_all_pairs = self.data.get_cbow_batch_all_pairs(
            self.batch_size, self.context_size)
        pair_count = len(pos_all_pairs)
        process_bar = tqdm(range(int(pair_count / self.batch_size)))
        for _ in process_bar:
            pos_pairs = self.data.get_cbow_batch_pairs(self.batch_size,
                                                       self.window_size)
            if self.using_hs:
                pos_pairs, neg_pairs = self.data.get_cbow_pairs_by_huffman(
                    pos_pairs)
            else:
                pos_pairs, neg_pairs = self.data.get_cbow_pairs_by_neg_sampling(
                    pos_pairs, self.context_size)

            pos_u = [pair[0] for pair in pos_pairs]
            pos_v = [int(pair[1]) for pair in pos_pairs]
            neg_u = [pair[0] for pair in neg_pairs]
            neg_v = [int(pair[1]) for pair in neg_pairs]

            self.optimizer.zero_grad()
            loss = self.cbow_model.forward(pos_u, pos_v, neg_u, neg_v)
            loss.backward()
            self.optimizer.step()
        print("CBOW Trained and Saving File......")
        self.cbow_model.save_embedding(self.data.id2word,
                                       self.output_file_name)
        print("CBOW Trained and Saved File.")
    def __init__(self,
                 input_file_name,
                 output_file_name,
                 emb_dimension=100,
                 batch_size=100,
                 window_size=5,
                 iteration=5,
                 initial_lr=0.025,
                 min_count=5,
                 using_hs=False,
                 using_neg=False,
                 context_size=2,
                 hidden_size=128,
                 cbow=None,
                 skip_gram=None):
        """Initilize class parameters.

        Args:
            input_file_name: Name of a text data from file. Each line is a sentence splited with space.
            output_file_name: Name of the final embedding file.
            emb_dimention: Embedding dimention, typically from 50 to 500.
            batch_size: The count of word pairs for one forward.
            window_size: Max skip length between words.
            iteration: Control the multiple training iterations.
            initial_lr: Initial learning rate.
            min_count: The minimal word frequency, words with lower frequency will be filtered.
            using_hs: Whether using hierarchical softmax.

        Returns:
            None.
        """
        print("\nInput File loading......\n")
        self.data = InputData(input_file_name, min_count)
        print("\nInput File loaded.\n")
        print("Input Data", self.data)
        self.output_file_name = output_file_name
        self.emb_size = len(self.data.word2id)
        print("emb_size", self.emb_size)
        self.emb_dimension = emb_dimension
        self.batch_size = batch_size
        self.window_size = window_size
        self.iteration = iteration
        self.initial_lr = initial_lr
        self.context_size = context_size
        self.hidden_size = hidden_size
        self.using_hs = using_hs
        self.using_neg = using_neg
        self.cbow = cbow
        self.skip_gram = skip_gram
        if self.skip_gram is not None and self.skip_gram:
            self.skip_gram_model = SkipGramModel(self.emb_size,
                                                 self.emb_dimension)
            print("skip_gram_model", self.skip_gram_model)
            self.optimizer = optim.SGD(self.skip_gram_model.parameters(),
                                       lr=self.initial_lr)
        if self.cbow is not None and self.cbow:
            # self.cbow_model = CBOW(self.emb_size, self.context_size, self.emb_dimension, self.hidden_size)
            self.cbow_model = CBOW(self.emb_size, self.emb_dimension)
            print("CBOW_model", self.cbow_model)
            self.optimizer = optim.SGD(self.cbow_model.parameters(),
                                       lr=self.initial_lr)
class Word2Vec:
    def __init__(self,
                 input_file_name,
                 output_file_name,
                 emb_dimension=100,
                 batch_size=100,
                 window_size=5,
                 iteration=5,
                 initial_lr=0.025,
                 min_count=5,
                 using_hs=False,
                 using_neg=False,
                 context_size=2,
                 hidden_size=128,
                 cbow=None,
                 skip_gram=None):
        """Initilize class parameters.

        Args:
            input_file_name: Name of a text data from file. Each line is a sentence splited with space.
            output_file_name: Name of the final embedding file.
            emb_dimention: Embedding dimention, typically from 50 to 500.
            batch_size: The count of word pairs for one forward.
            window_size: Max skip length between words.
            iteration: Control the multiple training iterations.
            initial_lr: Initial learning rate.
            min_count: The minimal word frequency, words with lower frequency will be filtered.
            using_hs: Whether using hierarchical softmax.

        Returns:
            None.
        """
        print("\nInput File loading......\n")
        self.data = InputData(input_file_name, min_count)
        print("\nInput File loaded.\n")
        print("Input Data", self.data)
        self.output_file_name = output_file_name
        self.emb_size = len(self.data.word2id)
        print("emb_size", self.emb_size)
        self.emb_dimension = emb_dimension
        self.batch_size = batch_size
        self.window_size = window_size
        self.iteration = iteration
        self.initial_lr = initial_lr
        self.context_size = context_size
        self.hidden_size = hidden_size
        self.using_hs = using_hs
        self.using_neg = using_neg
        self.cbow = cbow
        self.skip_gram = skip_gram
        if self.skip_gram is not None and self.skip_gram:
            self.skip_gram_model = SkipGramModel(self.emb_size,
                                                 self.emb_dimension)
            print("skip_gram_model", self.skip_gram_model)
            self.optimizer = optim.SGD(self.skip_gram_model.parameters(),
                                       lr=self.initial_lr)
        if self.cbow is not None and self.cbow:
            # self.cbow_model = CBOW(self.emb_size, self.context_size, self.emb_dimension, self.hidden_size)
            self.cbow_model = CBOW(self.emb_size, self.emb_dimension)
            print("CBOW_model", self.cbow_model)
            self.optimizer = optim.SGD(self.cbow_model.parameters(),
                                       lr=self.initial_lr)

    # @profile
    def skip_gram_train(self):
        """Multiple training.

        Returns:
            None.
        """
        pair_count = self.data.evaluate_pair_count(self.window_size)
        print("pair_count", pair_count)
        batch_count = self.iteration * pair_count / self.batch_size
        print("batch_count", batch_count)
        process_bar = tqdm(range(int(batch_count)))
        self.skip_gram_model.save_embedding(self.data.id2word,
                                            'skip_gram_begin_embedding.txt')
        for i in process_bar:
            pos_pairs = self.data.get_batch_pairs(self.batch_size,
                                                  self.window_size)
            if self.using_hs:
                pos_pairs, neg_pairs = self.data.get_pairs_by_huffman(
                    pos_pairs)
            else:
                pos_pairs, neg_pairs = self.data.get_pairs_by_neg_sampling(
                    pos_pairs, 5)

            pos_u = [int(pair[0]) for pair in pos_pairs]
            pos_v = [int(pair[1]) for pair in pos_pairs]
            neg_u = [int(pair[0]) for pair in neg_pairs]
            neg_v = [int(pair[1]) for pair in neg_pairs]

            self.optimizer.zero_grad()
            loss = self.skip_gram_model.forward(pos_u, pos_v, neg_u, neg_v)
            loss.backward()
            self.optimizer.step()

            process_bar.set_description(
                "Loss: %0.8f, lr: %0.6f" %
                (loss.data[0], self.optimizer.param_groups[0]['lr']))
            print("Loss: %0.8f, lr: %0.6f" %
                  (loss.data[0], self.optimizer.param_groups[0]['lr']))
            if i * self.batch_size % 100000 == 0:
                lr = self.initial_lr * (1.0 - 1.0 * i / batch_count)
                for param_group in self.optimizer.param_groups:
                    param_group['lr'] = lr
        self.skip_gram_model.save_embedding(self.data.id2word,
                                            self.output_file_name)

    def cbow_train(self):
        print("CBOW Training......")
        pair_count = self.data.evaluate_pair_count(self.context_size * 2 + 1)
        print("pair_count", pair_count)
        batch_count = self.iteration * pair_count / self.batch_size
        print("batch_count", batch_count)
        process_bar = tqdm(range(int(batch_count)))
        self.cbow_model.save_embedding(self.data.id2word,
                                       'cbow_begin_embedding.txt')
        for i in process_bar:
            pos_pairs = self.data.get_cbow_batch_all_pairs(
                self.batch_size, self.context_size)
            if self.using_hs:
                pos_pairs, neg_pairs = self.data.get_cbow_pairs_by_huffman(
                    pos_pairs)
            else:
                pos_pairs, neg_pairs = self.data.get_cbow_pairs_by_neg_sampling(
                    pos_pairs, self.context_size)

            pos_u = [pair[0] for pair in pos_pairs]
            pos_v = [int(pair[1]) for pair in pos_pairs]
            neg_u = [pair[0] for pair in neg_pairs]
            neg_v = [int(pair[1]) for pair in neg_pairs]

            self.optimizer.zero_grad()
            loss = self.cbow_model.forward(pos_u, pos_v, neg_u, neg_v)
            # loss = self.cbow_model.forwards(pos_v, pos_u, neg_v, neg_u)
            loss.backward()
            self.optimizer.step()
            process_bar.set_description(
                "Loss: %0.8f, lr: %0.6f" %
                (loss.data[0], self.optimizer.param_groups[0]['lr']))
            print("Loss: %0.8f, lr: %0.6f" %
                  (loss.data[0], self.optimizer.param_groups[0]['lr']))
            if i * self.batch_size % 100000 == 0:
                lr = self.initial_lr * (1.0 - 1.0 * i / batch_count)
                for param_group in self.optimizer.param_groups:
                    param_group['lr'] = lr
        print("CBOW Trained and Saving File......")
        self.cbow_model.save_embedding(self.data.id2word,
                                       self.output_file_name)
        print("CBOW Trained and Saved File.")
Esempio n. 14
0
N_EPOCH = 10000

if __name__ == '__main__':
    # dataset, dataloader
    trainset = PTBdata(path='ptb.train.txt', window=WINDOW, limit=100)
    trainloader = DataLoader(dataset=trainset,
                             batch_size=N_BATCH,
                             shuffle=True)

    # make vocab
    vocab_size = trainset.vocab_size
    word2idx = trainset.word2idx
    idx2word = trainset.idx2word

    # model, loss, optimizer
    model = CBOW(vocab_size, N_EMBED)
    criterion = nn.NLLLoss()
    optimizer = optim.Adam(model.parameters(), lr=0.01)

    for epoch in range(N_EPOCH):
        running_loss = 0
        for i, data in enumerate(trainloader):
            targets = data['target']
            contexts = data['context']

            prob = model(contexts)
            loss = criterion(prob, targets)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
Esempio n. 15
0
def train(embedding_dimension,
          number_of_hidden_layers,
          hidden_layer_dimension,
          activation_function,
          number_of_training_epochs,
          loss_function_choice,
          optimizer_choice,
          learning_rate,
          use_rnn=False,
          use_LSTM=False,
          use_GRU=False):
    train_losses = []
    train_accuracies = []
    validation_accuracies = []

    #Dynamically select model
    if use_rnn:
        print("Using Seq2Vec...")
        RNN_layer = nn.RNN
        if use_LSTM:
            print("Using LSTM...")
            RNN_layer = nn.LSTM
        elif use_GRU:
            print("Using GRU...")
            RNN_layer = nn.GRU
        model = Seq2Vec(vocab_size=len(vocab),
                        num_classes=len(language_set),
                        embedding_dim=embedding_dimension,
                        hidden_dim=hidden_layer_dimension,
                        number_of_hidden_layers=number_of_hidden_layers,
                        activation_function=activation_function,
                        RNN_layer=RNN_layer)
    else:
        model = CBOW(vocab_size=len(vocab),
                     num_classes=len(language_set),
                     embedding_dim=embedding_dimension,
                     hidden_dim=hidden_layer_dimension,
                     number_of_hidden_layers=number_of_hidden_layers,
                     activation_function=activation_function)

    for epoch in range(number_of_training_epochs):
        train_losses.append(
            train_epoch(epoch,
                        model,
                        X_train,
                        y_train,
                        loss_function=loss_function_choice(),
                        optimizer=optimizer_choice(model.parameters(),
                                                   lr=learning_rate)))
        train_accuracies.append(evaluate(model, X_train, y_train))
        validation_accuracies.append(
            evaluate(model, X_validation, y_validation))

    #Printing train, validation, and test accuracies, of the best achieved.
    train_accuracy = train_accuracies[len(train_accuracies) - 1]
    validation_accuracy = validation_accuracies[len(validation_accuracies) - 1]
    test_accuracy = evaluate(model, X_test, y_test)

    print(f"Training accuracy: {train_accuracy}")
    print(f"Validation accuracy: {validation_accuracy}")
    print(f"Test accuracy: {test_accuracy}")
    print("")
    print(f"Training accuracies: {train_accuracies}")
    print(f"Validation accuracies: {validation_accuracies}")

    return train_accuracy, validation_accuracy, test_accuracy, train_accuracies, validation_accuracies
Esempio n. 16
0
 def __init__(self, mode, vocab_dim, embed_dim, sparse):
     self.mode = mode
     if self.mode == 'cbow':
         self.model = CBOW(vocab_dim, embed_dim, sparse)
     elif self.mode == 'skip-gram':
         self.model = SkipGram(vocab_dim, embed_dim, sparse)