Esempio n. 1
0
import tensorflow as tf 
import numpy as np

from cityscapes import CityscapesDatset
from model import CGNet
from pipeline import batch_generator
from tqdm import tqdm 

from pipeline import load_image_test
from numpy import matlib
import cv2


model = CGNet(classes=19)


## TODO we need to make argument input from command line 

DATA_DIR = '/home/soojin/UOS-SSaS Dropbox/05. Data/00. Benchmarks/01. cityscapes'

tf.executing_eagerly()

# choose 'val' for validation or 'test' for test 
cityscapes_dataset = CityscapesDatset(DATA_DIR, data_type = 'train')
TEST_LENGTH = len(cityscapes_dataset)
print("Length of the dataset : {}".format(TEST_LENGTH))
model_weight_path = '/home/soojin/UOS-SSaS Dropbox/05. Data/03. Checkpoints/#cgnet/2021.07.28 single_train/epoch_240.h5'

model.build((1, 680, 680, 3))
model.load_weights(model_weight_path)
Esempio n. 2
0
###########################################################################
# Created by: Tianyi Wu
# Email: [email protected]
# Copyright (c) 2018
###########################################################################
from utils.summary import summary
import model.CGNet as net
model = net.Context_Guided_Network(19, M=3, N=21)
model.cuda()
summary(model, (3, 640, 640))
Esempio n. 3
0
def test_func(args):
    """
     main function for testing
     param args: global arguments
     return: None
    """
    print(args)
    global network_type

    if args.cuda:
        print("=====> use gpu id: '{}'".format(args.gpus))
        os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
        if not torch.cuda.is_available():
            raise Exception(
                "no GPU found or wrong gpu id, please run without --cuda")

    args.seed = random.randint(1, 10000)
    print("Random Seed: ", args.seed)
    torch.manual_seed(args.seed)
    if args.cuda:
        torch.cuda.manual_seed(args.seed)

    print('=====> checking if processed cached_data_file exists')
    if not os.path.isfile(args.inform_data_file):
        dataCollect = CityscapesTrainInform(
            args.data_dir,
            args.classes,
            train_set_file=args.dataset_list,
            inform_data_file=args.inform_data_file
        )  #collect mean std, weigth_class information
        data = dataCollect.collectDataAndSave()
        if data is None:
            print("error while pickling data, please check")
            exit(-1)
    else:
        data = pickle.load(open(args.inform_data_file, "rb"))
    M = args.M
    N = args.N

    model = CGNet.Context_Guided_Network(classes=args.classes, M=M, N=N)
    network_type = "CGNet"
    print("Arch:  CGNet")
    # define optimization criteria
    weight = torch.from_numpy(
        data['classWeights'])  # convert the numpy array to torch
    if args.cuda:
        weight = weight.cuda()
    criteria = CrossEntropyLoss2d(weight)  #weight

    if args.cuda:
        model = model.cuda()  # using GPU for inference
        criteria = criteria.cuda()
        cudnn.benchmark = True

    print('Dataset statistics')
    print('mean and std: ', data['mean'], data['std'])
    print('classWeights: ', data['classWeights'])

    if args.save_seg_dir:
        if not os.path.exists(args.save_seg_dir):
            os.makedirs(args.save_seg_dir)

    # validation set
    testLoader = torch.utils.data.DataLoader(CityscapesTestDataSet(
        args.data_dir, args.test_data_list, mean=data['mean']),
                                             batch_size=1,
                                             shuffle=False,
                                             num_workers=args.num_workers,
                                             pin_memory=True)

    if args.resume:
        if os.path.isfile(args.resume):
            print("=====> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)
            #model.load_state_dict(checkpoint['model'])
            model.load_state_dict(convert_state_dict(checkpoint['model']))
        else:
            print("=====> no checkpoint found at '{}'".format(args.resume))

    print("=====> beginning testing")
    print("test set length: ", len(testLoader))
    test(args, testLoader, model)
Esempio n. 4
0
def train_model(args):
    """
    Main function for training 
    Args:
       args: global arguments
    """
    h, w = map(int, args.input_size.split(','))
    input_size = (h, w)
    print("=====> Check if processed data file exists or not")
    if not os.path.isfile(args.inform_data_file):
        print("%s is not found" % (args.inform_data_file))
        dataCollect = CityscapesTrainInform(
            args.data_dir,
            args.classes,
            train_set_file=args.dataset_list,
            inform_data_file=args.inform_data_file
        )  #collect mean std, weigth_class information
        datas = dataCollect.collectDataAndSave()
        if datas is None:
            print('Error while pickling data. Please check.')
            exit(-1)
    else:
        datas = pickle.load(open(args.inform_data_file, "rb"))

    print(args)
    global network_type

    if args.cuda:
        print("=====> Use gpu id: '{}'".format(args.gpus))
        os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
        if not torch.cuda.is_available():
            raise Exception(
                "No GPU found or Wrong gpu id, please run without --cuda")

    args.seed = random.randint(1, 10000)
    print("Random Seed: ", args.seed)
    torch.manual_seed(args.seed)
    if args.cuda:
        torch.cuda.manual_seed(args.seed)

    cudnn.enabled = True
    M = args.M
    N = args.N
    # load the model
    print('=====> Building network')
    model = CGNet.Context_Guided_Network(classes=args.classes, M=M, N=N)
    network_type = "CGNet"
    print("current architeture:  CGNet")
    args.savedir = args.savedir + network_type + "_M" + str(M) + 'N' + str(
        N) + '/'

    # create the directory of checkpoint if not exist
    if not os.path.exists(args.savedir):
        os.makedirs(args.savedir)

    print('=====> Computing network parameters')
    total_paramters = netParams(model)
    print('Total network parameters: ' + str(total_paramters))

    print("data['classWeights']: ", datas['classWeights'])
    weight = torch.from_numpy(datas['classWeights'])
    criteria = CrossEntropyLoss2d(weight)
    criteria = criteria.cuda()
    print('=====> Dataset statistics')
    print('mean and std: ', datas['mean'], datas['std'])

    if args.cuda:
        if torch.cuda.device_count() > 1:
            print("torch.cuda.device_count()=", torch.cuda.device_count())
            model = torch.nn.DataParallel(
                model).cuda()  #multi-card data parallel
        else:
            print("single GPU for training")
            model = model.cuda()  #single card

    start_epoch = 0

    #DataLoader
    trainLoader = data.DataLoader(CityscapesDataSet(args.data_dir,
                                                    args.train_data_list,
                                                    crop_size=input_size,
                                                    scale=args.random_scale,
                                                    mirror=args.random_mirror,
                                                    mean=datas['mean']),
                                  batch_size=args.batch_size,
                                  shuffle=True,
                                  num_workers=args.num_workers,
                                  pin_memory=True,
                                  drop_last=True)

    valLoader = data.DataLoader(CityscapesValDataSet(args.data_dir,
                                                     args.val_data_list,
                                                     f_scale=1,
                                                     mean=datas['mean']),
                                batch_size=1,
                                shuffle=True,
                                num_workers=args.num_workers,
                                pin_memory=True,
                                drop_last=True)

    if args.resume:
        if os.path.isfile(args.resume):
            print("=====> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)
            start_epoch = checkpoint['epoch']
            model.load_state_dict(checkpoint['model'])
            print("=====> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))
        else:
            print("=====> no checkpoint found at '{}'".format(args.resume))

    model.train()
    cudnn.benchmark = True

    logFileLoc = args.savedir + args.logFile
    if os.path.isfile(logFileLoc):
        logger = open(logFileLoc, 'a')
    else:
        logger = open(logFileLoc, 'w')
        logger.write("Parameters: %s" % (str(total_paramters)))
        logger.write(
            "\n%s\t\t%s\t\t%s\t\t%s\t\t%s\t\t" %
            ('Epoch', 'Loss(Tr)', 'Loss(val)', 'mIOU (tr)', 'mIOU (val)'))
    logger.flush()
    optimizer = torch.optim.Adam(model.parameters(),
                                 args.lr, (0.9, 0.999),
                                 eps=1e-08,
                                 weight_decay=5e-4)

    print('=====> beginning training')
    for epoch in range(start_epoch, args.max_epochs):
        lossTr, per_class_iu_tr, mIOU_tr, lr = train(args, trainLoader, model,
                                                     criteria, optimizer,
                                                     epoch)
        # evaluate on validation set
        if epoch % 50 == 0:
            mIOU_val, per_class_iu = val(args, valLoader, model, criteria)
            logger.write("\n%d\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.7f" %
                         (epoch, lossTr, mIOU_tr, mIOU_val, lr))
            logger.flush()
            print("Epoch : " + str(epoch) + ' Details')
            print(
                "\nEpoch No.: %d\tTrain Loss = %.4f\t mIOU(tr) = %.4f\t mIOU(val) = %.4f\t lr= %.6f"
                % (epoch, lossTr, mIOU_tr, mIOU_val, lr))
        else:
            logger.write("\n%d\t\t%.4f\t\t%.4f\t\t%.7f" %
                         (epoch, lossTr, mIOU_tr, lr))
            logger.flush()
            print("Epoch : " + str(epoch) + ' Details')
            print(
                "\nEpoch No.: %d\tTrain Loss = %.4f\t mIOU(tr) = %.4f\t lr= %.6f"
                % (epoch, lossTr, mIOU_tr, lr))
        #save the model
        model_file_name = args.savedir + '/model_' + str(epoch + 1) + '.pth'
        state = {"epoch": epoch + 1, "model": model.state_dict()}
        torch.save(state, model_file_name)
    logger.close()
Esempio n. 5
0
def test_model(args):
    """
    main function for testing 
    args:
       args: global arguments
    """
    print("=====> Check if the cached file exists ")
    if not os.path.isfile(args.inform_data_file):
        print("%s is not found" % (args.inform_data_file))
        dataCollect = CamVidTrainInform(
            args.data_dir,
            args.classes,
            train_set_file=args.dataset_list,
            inform_data_file=args.inform_data_file
        )  #collect mean std, weigth_class information
        datas = dataCollect.collectDataAndSave()
        if datas is None:
            print('Error while pickling data. Please check.')
            exit(-1)
    else:
        print("%s exists" % (args.inform_data_file))
        datas = pickle.load(open(args.inform_data_file, "rb"))

    print(args)
    global network_type

    if args.cuda:
        print("=====> Use gpu id: '{}'".format(args.gpus))
        os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
        if not torch.cuda.is_available():
            raise Exception(
                "No GPU found or Wrong gpu id, please run without --cuda")

    args.seed = random.randint(1, 10000)
    print("Random Seed: ", args.seed)
    torch.manual_seed(args.seed)
    if args.cuda:
        torch.cuda.manual_seed(args.seed)
    cudnn.enabled = True

    M = args.M
    N = args.N
    model = CGNet.Context_Guided_Network(classes=args.classes, M=M, N=N)
    network_type = "CGNet"
    print("=====> current architeture:  CGNet_M%sN%s" % (M, N))
    total_paramters = netParams(model)
    print("the number of parameters: " + str(total_paramters))
    print("data['classWeights']: ", datas['classWeights'])
    weight = torch.from_numpy(datas['classWeights'])
    print("=====> Dataset statistics")
    print("mean and std: ", datas['mean'], datas['std'])

    # define optimization criteria
    criteria = CrossEntropyLoss2d(weight, args.ignore_label)
    if args.cuda:
        model = model.cuda()
        criteria = criteria.cuda()

    #load test set
    train_transform = transforms.Compose([transforms.ToTensor()])
    testLoader = data.DataLoader(CamVidValDataSet(args.data_dir,
                                                  args.test_data_list,
                                                  f_scale=1,
                                                  mean=datas['mean']),
                                 batch_size=args.batch_size,
                                 shuffle=True,
                                 num_workers=args.num_workers,
                                 pin_memory=True,
                                 drop_last=True)

    if args.resume:
        if os.path.isfile(args.resume):
            print("=====> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)
            #model.load_state_dict(convert_state_dict(checkpoint['model']))
            model.load_state_dict(checkpoint['model'])
        else:
            print("=====> no checkpoint found at '{}'".format(args.resume))

    cudnn.benchmark = True

    print("=====> beginning test")
    print("length of test set:", len(testLoader))
    mIOU_val, per_class_iu = test(args, testLoader, model, criteria)
    print(mIOU_val)
    print(per_class_iu)
Esempio n. 6
0
    epochs = config.get('EPOCHS', None)
    num_gpu = config.get('NUM_GPU', None)

    num_m_blocks = config.get('NUM_M_BLOCKS', None)
    num_n_blocks = config.get('NUM_N_BLOCKS', None)

    init_learn_rate = config.get('INIT_LEARN_RATE', None)
    end_learn_rate = config.get('END_LEARN_RATE',  None)
    power = config.get('POWER', None)

    class_weight = config.get('CLASS_WEIGHT', None)

    log_template = 'Epoch: {}/{}, steps:{}/{}, Loss: {:2f}, Accuracy: {:2f}, MeanIoU: {:2f}'


    model = CGNet(num_classes = num_classes, M= num_m_blocks, N=num_n_blocks)

    train_loss = tf.keras.metrics.Mean(name='train_loss')
    train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
    train_iou = tf.keras.metrics.MeanIoU(num_classes= num_classes, name='train_miou')


    if dataset == 'Cityscapes':
        train_dataset = CityscapesDatset(data_dir)

    elif dataset == 'Concrete_Damage_Cityscapes':
        train_dataset = Concrete_Damage_Dataset_as_Cityscapes(data_dir)

    num_steps = len(train_dataset)//batch_size

    optimizer = load_optimizer(init_learn_rate, end_learn_rate, power)
Esempio n. 7
0
def test_func(args):
    '''
     Main function for testing
     param args: global arguments
     return: None
    '''
    print(args)
    global network_type

    if args.cuda:
        print("=====> use gpu id: '{}'".format(args.gpus))
        os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
        if not torch.cuda.is_available():
            raise Exception(
                "No GPU found or Wrong gpu id, please run without --cuda")

    args.seed = random.randint(1, 10000)
    print("Random Seed: ", args.seed)
    torch.manual_seed(args.seed)
    if args.cuda:
        torch.cuda.manual_seed(args.seed)

    print('checking if processed cached_data_file exists or not')
    if not os.path.isfile(args.cached_data_file):
        dataCollect = StatisticalInformDataset(args.data_dir, args.classes,
                                               args.cached_data_file)
        data = dataCollect.collectDataAndSave()
        if data is None:
            print("error while pickling data, please check")
            exit(-1)
    else:
        data = pickle.load(open(args.cached_data_file, "rb"))

    M = args.M
    N = args.N
    # load the model
    print('====> Building network')
    model = net.Context_Guided_Network(classes=args.classes, M=M, N=N)
    network_type = "CGNet"
    print("Arch:  CGNet")

    if args.cuda:
        #model = torch.nn.DataParallel(model).cuda()  # multi-card testing
        model = model.cuda()  # single-card testing
    print('Dataset statistics')
    print('mean and std: ', data['mean'], data['std'])
    print('classWeights: ', data['classWeights'])

    if args.save_seg_dir:
        if not os.path.exists(args.save_seg_dir):
            os.makedirs(args.save_seg_dir)

    testLoader = torch.utils.data.DataLoader(CityscapesTestDataSet(
        args.data_dir, args.test_data_list, mean=data['mean']),
                                             batch_size=1,
                                             shuffle=False,
                                             num_workers=args.num_workers,
                                             pin_memory=True)

    if args.cuda:
        cudnn.benchmark = True

    print("=====> load pretrained model")
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)
            model.load_state_dict(convert_state_dict(checkpoint['model']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

    # evaluate on test set
    print("=====> beginning test")
    print("test set length: ", len(testLoader))
    test(args, testLoader, model)