Esempio n. 1
0
def main(argv):
    data_manager = DataManager()
    data_manager.prepare()

    dae = DAE()
    vae = VAE(dae, beta=flags.vae_beta)
    scan = SCAN(dae, vae, beta=flags.scan_beta, lambd=flags.scan_lambda)
    scan_recomb = SCANRecombinator(dae, vae, scan)

    dae_saver = CheckPointSaver(flags.checkpoint_dir, "dae", dae.get_vars())
    vae_saver = CheckPointSaver(flags.checkpoint_dir, "vae", vae.get_vars())
    scan_saver = CheckPointSaver(flags.checkpoint_dir, "scan", scan.get_vars())
    scan_recomb_saver = CheckPointSaver(flags.checkpoint_dir, "scan_recomb",
                                        scan_recomb.get_vars())

    sess = tf.Session()

    # Initialze variables
    init = tf.global_variables_initializer()
    sess.run(init)

    # For Tensorboard log
    summary_writer = tf.summary.FileWriter(flags.log_file, sess.graph)

    # Load from checkpoint
    dae_saver.load(sess)
    vae_saver.load(sess)
    scan_saver.load(sess)
    scan_recomb_saver.load(sess)

    # Train
    if flags.train_dae:
        train_dae(sess, dae, data_manager, dae_saver, summary_writer)

    if flags.train_vae:
        train_vae(sess, vae, data_manager, vae_saver, summary_writer)

    disentangle_check(sess, vae, data_manager)

    if flags.train_scan:
        train_scan(sess, scan, data_manager, scan_saver, summary_writer)

    sym2img_check(sess, scan, data_manager)
    img2sym_check(sess, scan, data_manager)

    if flags.train_scan_recomb:
        train_scan_recomb(sess, scan_recomb, data_manager, scan_recomb_saver,
                          summary_writer)

    recombination_check(sess, scan_recomb, data_manager)

    sess.close()
Esempio n. 2
0
  def test_vae(self):
    dae = DAE()
    vae = VAE(dae)

    vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, "vae")
    # Check size of optimizing vars
    self.assertEqual(len(vars), 14+12)
Esempio n. 3
0
    def test_vae(self):
        dae = DAE()
        vae = VAE(dae)

        vars = vae.get_vars()
        # Check size of optimizing vars
        self.assertEqual(len(vars), 14 + 12)
Esempio n. 4
0
  def test_scan(self):
    dae = DAE()
    vae = VAE(dae)
    scan = SCAN(dae, vae)

    vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, "scan")
    # Check size of optimizing vars
    self.assertEqual(len(vars), 6+4)
Esempio n. 5
0
    def test_scan(self):
        dae = DAE()
        vae = VAE(dae)
        scan = SCAN(dae, vae)

        vars = scan.get_vars()
        # Check size of optimizing vars
        self.assertEqual(len(vars), 6 + 4)
Esempio n. 6
0
def train(data, path):
    os.system("mkdir -p " + path)
    norm = data['norm']
    pvc = data['pvc']
    feat = np.concatenate([norm, pvc], axis=0)
    #feat = norm
    x = tf.placeholder(tf.float32, [None, input_dim], name='x')
    z = tf.placeholder(tf.float32, [None, z_dim], name='z')

    model = DAE()
    loss = model.loss(x)
    _z = model.encode(x)
    x_h = model.decode(z)
    tf.add_to_collection('encode', _z)
    tf.add_to_collection('decode', x_h)
    tf.add_to_collection('prd', loss['pmse'])
    tf.add_to_collection('cc', loss['corr'])
    w_loss = 60 * loss['pmse'] - 40 * loss['corr']

    optimize = tf.train.AdamOptimizer(learning_rate=5e-5,
                                      beta1=0.9,
                                      beta2=0.99).minimize(w_loss)
    #optimize = tf.train.RMSPropOptimizer(learning_rate=1e-5).minimize(loss)
    merged = tf.summary.merge_all()

    with tf.Session() as sess:
        start = time.time()
        init = tf.global_variables_initializer()
        sess.run(init)
        saver = tf.train.Saver()
        writer = tf.summary.FileWriter(path + 'logs', sess.graph)

        for i in range(iter_num):
            np.random.shuffle(feat)
            for j in range(0, len(feat), batch_num):
                _ = sess.run([optimize], feed_dict={x: feat[j:j + batch_num]})
            if i % 100 == 0:
                xb = feat[j:]
                _, err, result = sess.run([optimize, loss, merged],
                                          feed_dict={x: xb})
                writer.add_summary(result, len(feat) * i + j)
                print('Epoch [%4d] Time [%5.4f] PRD: [%.4f] CC: [%.4f]' %
                      (i + 1, time.time() - start, err['pmse'], err['corr']))
            if i % 1000 == 0:
                saver.save(sess, path + 'test_best_model')
Esempio n. 7
0
    def test_scan_recombinator(self):
        dae = DAE()
        vae = VAE(dae)
        scan = SCAN(dae, vae)
        scan_recomb = SCANRecombinator(dae, vae, scan)

        vars = scan_recomb.get_vars()
        # Check size of optimizing vars
        self.assertEqual(len(vars), 4)
Esempio n. 8
0
def main(argv):
    data_manager = DataManager()
    data_manager.prepare()

    dae = DAE()
    vae = VAE(dae)
    scan = SCAN(dae, vae)

    dae_saver = CheckPointSaver(CHECKPOINT_DIR, "dae", dae.get_vars())
    vae_saver = CheckPointSaver(CHECKPOINT_DIR, "vae", vae.get_vars())
    scan_saver = CheckPointSaver(CHECKPOINT_DIR, "scan", scan.get_vars())

    sess = tf.Session()

    # Initialze variables
    init = tf.global_variables_initializer()
    sess.run(init)

    # For Tensorboard log
    summary_writer = tf.summary.FileWriter(LOG_FILE, sess.graph)

    # Load from checkpoint
    dae_saver.load(sess)
    vae_saver.load(sess)
    scan_saver.load(sess)

    # Train
    train_dae(sess, dae, data_manager, dae_saver, summary_writer)
    train_vae(sess, vae, data_manager, vae_saver, summary_writer)

    disentangle_check(sess, vae, data_manager)

    train_scan(sess, scan, data_manager, scan_saver, summary_writer)

    sym2img_check(sess, scan, data_manager)
    img2sym_check(sess, scan, data_manager)

    sess.close()
Esempio n. 9
0
            step += 1
            if epoch % display_epoch == 0:
                print("Epoch:", '%04d' % (epoch + 1), "reconstr=",
                      "{:.3f}".format(average_reconstr_loss), "latent0=",
                      "{:.3f}".format(average_latent_loss0), "latent1=",
                      "{:.3f}".format(average_latent_loss1))

        if (epoch % save_epoch == 0) or (epoch == training_epochs - 1):
            torch.save(scan.state_dict(),
                       '{}/scan_epoch_{}.pth'.format(exp, epoch))


data_manager = DataManager()
data_manager.prepare()

dae = DAE()
vae = VAE()
scan = SCAN()
if use_cuda:
    dae.load_state_dict(torch.load('save/dae/dae_epoch_2999.pth'))
    vae.load_state_dict(torch.load('save/vae/vae_epoch_2999.pth'))
    scan.load_state_dict(torch.load('save/scan/scan_epoch_1499.pth'))
    dae, vae, scan = dae.cuda(), vae.cuda(), scan.cuda()
else:
    dae.load_state_dict(
        torch.load('save/dae/dae_epoch_2999.pth',
                   map_location=lambda storage, loc: storage))
    vae.load_state_dict(
        torch.load('save/vae/vae_epoch_2999.pth',
                   map_location=lambda storage, loc: storage))
    scan.load_state_dict(
Esempio n. 10
0
#load into array
data_set=dataset.load_data(NORM_DATA_PATH)
#create one hot array 
one_hots=dataloader.generate_one_hots(data_set.shape[0])
#create shuffle indexes
perm=dataset.index_generate_random(data_set)
#shuffle the data
data_set=data_set[perm]
one_hots=one_hots[perm]

train_data,test_data=dataset.split_train_test(data_set,config.TRAIN_SIZE)
oh_train_data,oh_test_data=dataset.split_train_test(one_hots,config.TRAIN_SIZE)

writer = SummaryWriter()

DAE_net=DAE(config.DATA_CHANNEL,config.DAE_ENCODER_SIZES,config.DAE_DECODER_SIZES,config.DAE_ENCODER_ACTIVATION,config.DAE_DECODER_ACTIVATION,config.DAE_config.DAE_BOTTLENECK_SIZE,"bernouilli")
DAE_net.cuda()
optim_dae= torch.optim.Adam(DAE_net.parameters(),lr=config.DAE_lr,eps=config.DAE_eps)

if not config.DAE_PRETRAIN:
        train_set=dataloader.DAEdata(train_data)
        
        dae_training_generator=data.DataLoader(train_set,**config.generator_params)
        
        test_set=dataloader.DAEdata(test_data)
        
        dae_test_generator=data.DataLoader(test_set,**config.generator_params)
        
        train.train_dae(DAE_net,optim_dae,dae_training_generator,dae_test_generator,nn.MSELoss(),config.DAE_CHECKPOINT,config.DAE_TRAIN_EPOCH,writer,config.DAE_LOG):
else:
        utils.load_model(config.DAE_LOAD_PATH,DAE_net,optim_dae)
Esempio n. 11
0
                    help="print out decoded output and error of each sample")
parser.add_argument('--output-path',
                    default=None,
                    type=str,
                    help="Where to save raw acoustic output")
parser = add_decoder_args(parser)
parser.add_argument('--save-output',
                    action="store_true",
                    help="Saves output of model from test")
args = parser.parse_args()

if __name__ == '__main__':
    torch.set_grad_enabled(False)
    device = torch.device("cuda" if args.cuda else "cpu")
    model = load_model(device, args.model_path, args.cuda)
    denoiser = DAE()
    denoiser.load_state_dict(
        torch.load('./models/denoiser_deepspeech_final.pth'))
    denoiser = denoiser.to(device)
    denoiser.eval()

    if args.decoder == "beam":
        from decoder import BeamCTCDecoder

        decoder = BeamCTCDecoder(model.labels,
                                 lm_path=args.lm_path,
                                 alpha=args.alpha,
                                 beta=args.beta,
                                 cutoff_top_n=args.cutoff_top_n,
                                 cutoff_prob=args.cutoff_prob,
                                 beam_width=args.beam_width,
                          noise_dir=args.noise_dir,
                          noise_prob=args.noise_prob,
                          noise_levels=(args.noise_min, args.noise_max))

        rnn_type = args.rnn_type.lower()
        assert rnn_type in supported_rnns, "rnn_type should be either lstm, rnn or gru"
        model = DeepSpeech(rnn_hidden_size=args.hidden_size,
                           nb_layers=args.hidden_layers,
                           labels=labels,
                           rnn_type=supported_rnns[rnn_type],
                           audio_conf=audio_conf,
                           bidirectional=args.bidirectional,
                           mixed_precision=args.mixed_precision)

    model = DeepSpeech.load_model(args.model_path)
    denoiser = DAE()

    decoder = GreedyDecoder(labels)
    train_dataset_clean = SpectrogramDataset(
        audio_conf=audio_conf,
        manifest_filepath=args.train_manifest_clean,
        labels=labels,
        normalize=True,
        augment=args.augment)
    train_dataset_adv = SpectrogramDataset(
        audio_conf=audio_conf,
        manifest_filepath=args.train_manifest_adv,
        labels=labels,
        normalize=True,
        augment=args.augment)
    test_dataset = SpectrogramDataset(audio_conf=audio_conf,
Esempio n. 13
0
from torchvision.utils import save_image

from model import DAE
from visualize import *

# hyperparameters
num_epochs = 100
batch_size = 128
lr = 1e-3

# get images from MNIST database
dataset = MNIST('../data', transform=transforms.ToTensor(), download=True)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

# create denoising autoencoder and optimizer for it
dae = DAE()
optimizer = optim.Adam(dae.parameters(), lr=lr)

# start training
for epoch in range(num_epochs):

    # minibatch optimization with Adam
    for data in dataloader:
        img, _ = data

        # change the images to be 1D
        img = img.view(img.size(0), -1)

        # get output from network
        out = dae(img)
Esempio n. 14
0
    def test_dae(self):
        dae = DAE()

        vars = dae.get_vars()
        # Check size of optimizing vars
        self.assertEqual(len(vars), 10 + 10)
Esempio n. 15
0
        if max_values[col] - min_values[col] != 0:
            out_data[:, col] /= max_values[col] - min_values[col]

        np.place(out_data[:, col], max_mask, 1.0)
        np.place(out_data[:, col], min_mask, 0.0)
    return out_data


if __name__ == "__main__":
    epochs = 5000
    batch_size = 128

    input_size = 34
    latent_size = 8

    model = DAE(input_size, latent_size)
    model.to('cuda')
    torch.backends.cudnn.benchmark = True

    loss_fn = nn.MSELoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
    DECAY = 0.95
    scheduler = LambdaLR(optimizer, lr_lambda=lambda t: DECAY**t)

    data = pd.read_csv("model/training_test_data.csv")
    data.sample(frac=1, random_state=200)
    data = data.to_numpy()
    size = data.shape[0]

    training_data = data[:int(0.7 * size)]
    validation_data = data[int(0.7 * size):int(0.9 * size)]
Esempio n. 16
0
            target = torch.transpose(target, 1, 3)
            if use_cuda: hsv_image_t = target.data.cpu().numpy()
            else: hsv_image_t = target.data.numpy()
            rgb_image_t = utils.convert_hsv_to_rgb(hsv_image_t[0])
            utils.save_image(rgb_image_t,
                             "{}/target_epoch_{}.png".format(exp, epoch))

        # Save to checkpoint
        if (epoch % save_epoch == 0) or (epoch == training_epochs - 1):
            torch.save(dae.state_dict(),
                       '{}/dae_epoch_{}.pth'.format(exp, epoch))


data_manager = DataManager()
data_manager.prepare()
dae = DAE()
if opt.load != '':
    print('loading {}'.format(opt.load))
    if use_cuda:
        dae.load_state_dict(torch.load())
    else:
        dae.load_state_dict(
            torch.load(exp + '/' + opt.load,
                       map_location=lambda storage, loc: storage))

if use_cuda: dae = dae.cuda()

if opt.train:
    dae_optimizer = optim.Adam(dae.parameters(), lr=1e-4, eps=1e-8)
    train_dae(dae, data_manager, dae_optimizer)
def train(data, Test_data, path):
    os.system("mkdir -p " + path)
    #print(path)
    noi = data['noi']
    #feat = _preprocessing(noi)
    feat = noi
    # Train Clean Target
    clean = data['clean']
    #print(clean.shape)
    #print(int(clean.shape[0]))
    clean = numpy.matlib.repmat(clean, 5, 1)
    #print(feat.shape, clean.shape)
    #target = _preprocessing(clean)
    target = clean
    #print(feat.shape)
    # validation data
    Test_noi = Test_data['noi']
    #Test_feat = _preprocessing(Test_noi)
    Test_feat = Test_noi
    # valid Clean Target
    Test_clean = Test_data['clean']
    clean_Test = numpy.matlib.repmat(Test_clean, 5, 1)
    #Test_target= _preprocessing(clean_Test)
    Test_target = clean_Test
    #print(Test_feat.shape, Test_target.shape)

    x = tf.placeholder(tf.float32, [None, input_dim], name='x')
    z = tf.placeholder(tf.float32, [None, z_dim], name='z')
    y = tf.placeholder(tf.float32, [None, input_dim], name='y')

    model = DAE()
    loss = model.loss(x, y)
    training_summary = tf.summary.scalar("training_loss", loss['mse'])
    validation_summary = tf.summary.scalar("validation_loss", loss['mse'])

    _z = model.encode(x)
    x_h = model.decode(z)
    tf.add_to_collection('encode', _z)
    tf.add_to_collection('decode', x_h)
    tf.add_to_collection('err_mse', loss['mse'])
    #reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
    #reg_constant = 0.01
    #l2_loss = tf.losses.get_regularization_loss()
    #w_loss = loss['mse'] + l2_loss # + reg_constant * sum(reg_losses)
    w_loss = loss['mse']

    #lossL2 = tf.add_n([ tf.nn.l2_loss(v) for v in tf.trainable_variables if 'bias' not in v.name ]) * 0.001
    #w_loss = loss['mse'] + lossL2
    print(
        np.sum([
            np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()
        ]))
    optimize = tf.train.AdamOptimizer(learning_rate=5e-5,
                                      beta1=0.9,
                                      beta2=0.99).minimize(w_loss)
    #optimize = tf.train.RMSPropOptimizer(learning_rate=1e-5).minimize(loss)
    #merged = tf.summary.merge_all()

    with tf.Session() as sess:
        start = time.time()
        init = tf.global_variables_initializer()
        sess.run(init)
        saver = tf.train.Saver()
        writer = tf.summary.FileWriter(path + 'logs', sess.graph)
        patience = 10
        best_loss = 10000.
        for i in range(epoch):
            Num = np.arange(feat.shape[0])
            np.random.shuffle(Num)

            feat = feat[Num, :]
            target = target[Num, :]

            #length = int(feat.shape[0]/2)
            feat_1 = feat[0:-int(feat.shape[0] / 2), :]
            feat_2 = feat[-int(feat.shape[0] / 2):, :]
            com = np.array([feat_1, feat_2])
            target_1 = target[0:-int(target.shape[0] / 2), :]
            target_2 = target[-int(target.shape[0] / 2):, :]
            com_target = np.array([target_1, target_2])
            #print(feat_1.shape, feat_2.shape, com.shape)
            #feat_1 = np.reshape(feat[0:-int(feat.shape[0]/2),:], (int(feat.shape[0]/2),1024,-1))

            #feat_2 = np.reshape(feat[-int(feat.shape[0]/2):,:], (int(feat.shape[0]/2),1024,-1))

            for k in range(2):
                feat_noi = np.reshape(com[k, :, :], (-1, 1024))
                #print(feat.shape, com[k,:,:].shape)
                #feat_noi = com[k,:,:]
                target_clean = com_target[k, :, :]
                #print(feat_noi.shape)
                for j in range(0, len(feat_noi), batch_num):
                    sess.run(
                        [optimize],
                        feed_dict={
                            x: feat_noi[j:j + batch_num],
                            y: target_clean[j:j + batch_num]
                        })
                if i % 10 == 0:
                    # To log training accuracy.
                    err, train_summ = sess.run([loss, training_summary],
                                               feed_dict={
                                                   x: feat_noi,
                                                   y: target_clean
                                               })
                    writer.add_summary(train_summ, i)

                    # To log validation accuracy.
                    Test_err, valid_summ = sess.run([loss, validation_summary],
                                                    feed_dict={
                                                        x: Test_feat,
                                                        y: Test_target
                                                    })
                    writer.add_summary(valid_summ, i)
                    if Test_err['mse'] < best_loss:
                        best_loss = Test_err['mse']
                        patience = 10
                        saver.save(sess, path + 'test_best_model')
                    else:
                        patience -= 1
                    print(
                        'Epoch [%4d] Time [%5.4f] MSE [%.6f] Val_MSE [%.6f]' %
                        (i + 1, time.time() - start, err['mse'],
                         Test_err['mse']))
            if patience == 0:
                print('Early Stopping')
                break