Esempio n. 1
0
    loss_d_b.append(loss_D_B)

    epoch_end = time.time()
    time_epoch.append(epoch_end - epoch_start)
    print("epoch: {0}/{1} | G_loss = {2:.2f} | D_loss = {3:.2f}".format(
        epoch, opt.n_epochs, L_G, loss_D_A + loss_D_B))
    print("Time required to compute: {0:.2f}s | total time: {1:.2f}s".format(
        epoch_end - epoch_start,
        time.time() - total_time))
    #save model's parameters
    if ((epoch % opt.frequency) == 0):
        torch.save(Gnet_AB.state_dict(),
                   os.path.join(path_output, 'Gnet_AB-') + str(epoch) + '.pth')
        torch.save(Gnet_BA.state_dict(),
                   os.path.join(path_output, 'Gnet_BA-') + str(epoch) + '.pth')
        torch.save(Dnet_A.state_dict(),
                   os.path.join(path_output, 'Dnet_A-') + str(epoch) + '.pth')
        torch.save(Dnet_B.state_dict(),
                   os.path.join(path_output, 'Dnet_B-') + str(epoch) + '.pth')

np.save(os.path.join(path_output, "loss_i_A"), np.array(loss_i_A))
np.save(os.path.join(path_output, "loss_i_B"), np.array(loss_i_B))
np.save(os.path.join(path_output, "loss_gan_ab"), np.array(loss_gan_ab))
np.save(os.path.join(path_output, "loss_gan_ba"), np.array(loss_gan_ba))
np.save(os.path.join(path_output, "loss_c_aba"), np.array(loss_c_aba))
np.save(os.path.join(path_output, "loss_c_bab"), np.array(loss_c_bab))
np.save(os.path.join(path_output, "loss_g"), np.array(loss_g))
np.save(os.path.join(path_output, "loss_d_a"), np.array(loss_d_a))
np.save(os.path.join(path_output, "loss_d_b"), np.array(loss_d_b))
np.save(os.path.join(path_output, "time_epoch"), np.array(time_epoch))
Esempio n. 2
0
def train():
    opt = Config()  # 配置的实例
    dataloader = data_loader(opt)
    criterion = nn.BCELoss()

    device = torch.device("cuda: 0, 1, 2" if torch.cuda.is_available() else "cpu")  # 有cuda这个架构就使用0卡,无则cpu;device(可以指定任何设备,cpu,哪块或哪几块显卡)
    gnet = GNet(opt).to(device)
    dnet = DNet(opt).to(device)
    #writer.add_graph(gnet)'''做实验试验下第二个参数'''
    #writer.add_graph(dnet)
    if device.type == 'cuda':
        gnet = nn.DataParallel(gnet, [0, 1, 2])
        dnet = nn.DataParallel(dnet, [0, 1, 2])
    gnet.apply(weight_init)
    dnet.apply(weight_init)
    print('Generative NetWork:')
    print(gnet)
    print('')
    print('Discriminative NetWork:')
    print(dnet)

    g_optimizer = optim.Adam(gnet.parameters(), lr=opt.lr1, betas=(opt.beta1, 0.999))
    d_optimizer = optim.Adam(dnet.parameters(), lr=opt.lr2, betas=(opt.beta1, 0.999))
    print('g_optimizer:')
    print(g_optimizer)
    print('d_optimizer:')
    print(d_optimizer)

    writer = SummaryWriter(log_dir='result_shiyan')
    #dummy1_input = torch.rand(opt.batch_size, 3, 96,96)
    #dummy2_input = torch.rand(opt.batch_size, opt.nd,1,1)
    #writer.add_graph(dnet, dummy1_input.detach())
    #writer.add_graph(gnet, dumm2_input.detach())
    # Training Loop
    # Lists to keep track of progress
    img_list = []
    G_losses = []
    D_losses = []
    iters = 0
    fixed_noise = torch.randn(opt.batch_size, opt.nd, 1, 1, device=device)
    print("Starting Training Loop...")
    # For each epoch
    for epoch in range(1, opt.max_epoch + 1):
        # For each batch in the dataloader
        print(len(dataloader))
        print(type(dataloader))
        for i, (imgs, _) in enumerate(dataloader, 1):
            ############################
            # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
            ############################
            ## Train with all-real batch
            dnet.zero_grad()
            '''先训练判别器,再训练生成器'''
            # Format batch
            real_img = imgs.to(device)
            label = torch.full((opt.batch_size, ), opt.real_label, device=device)
            # Forward pass real batch through D
            output = dnet(real_img)  # 在model模块中已经被展成一维的啦
            # Calculate loss on all-real batch
            d_err_real = criterion(output, label)
            # Calculate gradients for D in backward pass
            d_err_real.backward()
            D_x = output.mean().item()  # 真实图片的平均得分,当然是接近1越好

            ## Train with all-fake batch
            # Generate batch of latent vectors  latent:隐藏的,潜伏的
            noise = torch.randn(opt.batch_size, opt.nd, 1, 1, device=device)
            # Generate fake image batch with G
            fake = gnet(noise)
            label.fill_(opt.fake_label)
            # Classify all fake batch with D
            output = dnet(fake.detach())
            # Calculate D's loss on the all-fake batch
            d_err_fake = criterion(output, label)
            # Calculate the gradients for this batch
            d_err_fake.backward()
            D_G_z1 = output.mean().item()  # 假图像的分数,自然是越接近0越好
            # Add the gradients from the all-real and all-fake batches
            d_err = d_err_real + d_err_fake  #tensor(1.272)+tensor(0.183)可以直接相加,不需要先取出数值。tensor
            # 自成体系,tensor和tensor的加减乘除和标量一模一样;只是tensor和标量之间不能直接算
            # Update D
            d_optimizer.step()

            ############################
            # (2) Update G network: maximize log(D(G(z)))
            ###########################
            gnet.zero_grad()
            label.fill_(opt.real_label)  # fake labels are real for generator cost
            # Since we just updated D, perform another forward pass of all-fake batch through D
            output = dnet(fake)  # 更新了一步D网络后,同样一批假图片,自然是希望判别得分output比更新前的假图片得分要小,也就是使下面的g_err扩大
            # Calculate G's loss based on this output
            g_err = criterion(output, label)
            '''生成器就是要把假图片往真标签身上凑;所以假图片+真标签,进行比较后,损失越小越好'''
            # Calculate gradients for G
            g_err.backward()
            D_G_z2 = output.mean().item()  # 因为更新过一次判别器,所以这个假图片的output均值应该比上面的假图片的output均值更接近0才健康
            # Update G
            g_optimizer.step()

            # Output training stats
            if i % 50 == 0:
                print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\treal_img_mean_score: %.4f\tfake_img_mean_score_1/2: %.4f / %.4f'
                    % (epoch, opt.max_epoch, i, len(dataloader),d_err.item(), g_err.item(), D_x, D_G_z1, D_G_z2))

            # Save Losses for plotting later
            G_losses.append(g_err.item())
            D_losses.append(d_err.item())

            writer.add_scalars('dnet_gnet_loss', {'G_losses': G_losses[iters], 'D_losses': D_losses[iters]}, iters)
            # Check how the generator is doing by saving G's output on fixed_noise
            if (iters % 500 == 0) or ((epoch == opt.max_epoch) and (i == len(dataloader))):
                with torch.no_grad():
                    fake = gnet(fixed_noise)#.detach().cpu()
                img_list.append(vutils.make_grid(fake, normalize=True))
                '''还不知道合成的图有多少个小图呢'''
                writer.add_image('fake%d'%(iters/500), img_list[int(iters/500)], int(iters/500))

            iters += 1
    
    #torch.save(dnet, 'dnet1.pth')
    #torch.save(gnet, 'gnet1.pth')
    torch.save(dnet.state_dict(), 'dd.pth')
    torch.save(gnet.state_dict(), 'gg.pth')

    #writer = SummaryWriter(log_dir='result_')
    print('最后的iters为: %d'%iters)
    print('G_losses长度为: %d'%len(G_losses))
    print('D_losses长度为: %d'%len(D_losses))
    #for i in range(iters):
        #writer.add_scalars('dnet_gnet_loss', {'G_losses': G_losses[i], 'D_losses': D_losses[i]}, i)
    print('img_list的长度为: %d'%len(img_list))
    #for i in range(len(img_list)):
        #writer.add_image('fake%d'%i, img_list[i], i)
    #writer.add_graph(dnet, input_to_model=(torch.rand(opt.batch_size, 3, 96, 96), ), verbose=False)
    #writer.add_graph(gnet, input_to_model=(torch.rand(opt.batch_size, op.nd, 1, 1), ), verbose=False)
    writer.close()
Esempio n. 3
0
def train(opt, device):

    dataloader = data_loader(opt)

    gnet = GNet(opt).to(device)
    dnet = DNet(opt).to(device)
    #writer.add_graph(gnet)'''做实验试验下第二个参数'''
    #writer.add_graph(dnet)
    if device.type == 'cuda':  # 就算device里有多个GPU可见,但是若不用分发功能,仍然只有第0块在跑
        gnet = nn.DataParallel(gnet, [0, 1, 2])  # list(range(ngpu))不好使,只能用前几个
        dnet = nn.DataParallel(dnet, [0, 1, 2])
    gnet.apply(
        weight_init)  # 也就是初始化了下面的d/gnet.parameters();不进行初始化则会系统给你进行一次随机初始
    dnet.apply(weight_init)
    print('Generative NetWork:')
    print(gnet)
    print('')
    print('Discriminative NetWork:')
    print(dnet)

    criterion = nn.BCELoss()
    '''
    params (iterable): iterable of parameters to optimize or dicts defining parameter groups
    除了下面的整体赋值,还可以通过迭代给优化器赋值,把模型中所有需要参数的过程都分别设置值;如学长代码:
    optimizer = optim.SGD([
                            {'params': model.features.parameters(), 'lr': 0.1 * lr},
                            {'params': model.sample_128.parameters(), 'lr': lr},
                            {'params': model.sample_256.parameters(), 'lr': lr},
                            {'params': model.fc_concat.parameters(), 'lr': lr}
                        ], lr=1e-1, momentum=0.9, weight_decay=1e-5)
    '''
    g_optimizer = optim.Adam(gnet.parameters(),
                             lr=opt.lr1,
                             betas=(opt.beta1, 0.999))
    d_optimizer = optim.Adam(dnet.parameters(),
                             lr=opt.lr2,
                             betas=(opt.beta1, 0.999))
    # 优化器只会进行一次初始赋值,其他都是反向调整
    print('g_optimizer:')
    print(g_optimizer)
    print('d_optimizer:')
    print(d_optimizer)

    writer = SummaryWriter(log_dir='train_result')
    # 定义writer时候就会生成events文件,而tensorboard执行时会搜索大文件下的所有路径,找出所有需要的文件
    #dummy1_input = torch.rand(opt.batch_size, 3, 96,96)
    #dummy2_input = torch.rand(opt.batch_size, opt.nd,1,1)
    #writer.add_graph(dnet, dummy1_input)
    #writer.add_graph(gnet, dumm2_input

    # Training Loop
    # Lists to keep track of progress
    '''完全可以不用列表,但是为了以后可能有其他用,就保留了'''
    img_list = []
    G_losses = []
    D_losses = []
    iters = 0
    fixed_noise = torch.randn(opt.batch_size, opt.nd, 1, 1, device=device)
    print("Starting Training Loop...")
    dnet.train()
    gnet.train()
    # 不写也默认为train模式;当有BN层和dropout层时,肯定得考虑模式切换,因为训练时这两个层有变化,验证时不能让它变,而eval()模式就不变,train()会变
    # For each epoch
    for epoch in range(1, opt.max_epoch + 1):
        # For each batch in the dataloader
        print(len(dataloader))
        print(type(dataloader))
        for i, (imgs, _) in enumerate(dataloader, 1):
            # torch.utils.data.DataLoader()返回的就是二元组组成的一个特殊的对象(不是列表等,也不能切片);
            # 在MNIST数据集中img, label = data;这些动漫头像没有标签,打印出来后发现是tensor([0, 0,...0, 0 0])
            ############################
            # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
            ############################
            ## Train with all-real batch
            dnet.zero_grad()
            '''先训练判别器,再训练生成器'''
            # Format batch
            real_img = imgs.to(device)  # 每个batch.to(device)
            # torch.full((2,3), 1.2),第一个参数必须是元组,可以是任意维数,但想要一维填充时也得为元组,而元组只有一个元素时后面必须有个,
            label = torch.full((opt.batch_size, ),
                               opt.real_label,
                               device=device)
            # Forward pass real batch through D
            output = dnet(real_img)  # 在model模块中已经被展成一维的啦
            # Calculate loss on all-real batch
            d_err_real = criterion(output, label)  # 平均损失
            # Calculate gradients for D in backward pass
            d_err_real.backward()
            D_x = output.mean().item()  # 真实图片的平均得分,当然是接近1越好

            ## Train with all-fake batch
            # Generate batch of latent vectors  latent:隐藏的,潜伏的
            noise = torch.randn(opt.batch_size, opt.nd, 1, 1, device=device)
            # gnet会生成opt.batch_size个图像,因为一个(opt.nd,1,1)可以生成一个图像;在gnet中,每张图有otp.nd个feature maps
            # ,每个feature map大小为1 x 1,所以每个opt.nd(也就是一个值),控制着生成图像中的一个特征
            # Generate fake image batch with G
            fake = gnet(noise)
            label.fill_(opt.fake_label)
            # Classify all fake batch with D
            output = dnet(fake.detach())
            # Calculate D's loss on the all-fake batch
            d_err_fake = criterion(output, label)
            # Calculate the gradients for this batch
            d_err_fake.backward()
            D_G_z1 = output.mean().item()  # 假图像的分数,自然是越接近0越好
            # Add the gradients from the all-real and all-fake batches
            d_err = d_err_real + d_err_fake  #tensor(1.272)+tensor(0.183)可以直接相加,不需要先取出数值。
            # tensor自成体系,tensor和tensor的加减乘除和标量一模一样;只是tensor和标量之间不能直接算
            # Update D
            d_optimizer.step()

            ############################
            # (2) Update G network: maximize log(D(G(z)))
            ###########################
            gnet.zero_grad()
            label.fill_(
                opt.real_label)  # fake labels are real for generator cost
            # Since we just updated D, perform another forward pass of all-fake batch through D
            output = dnet(
                fake
            )  # 更新了一步D网络后,同样一批假图片,自然是希望判别得分output比更新前的假图片得分要小,也就是使下面的g_err扩大
            # Calculate G's loss based on this output
            g_err = criterion(output, label)
            '''生成器就是要把假图片往真标签身上凑;所以假图片+真标签,进行比较后,损失越小越好'''
            # Calculate gradients for G
            g_err.backward()
            D_G_z2 = output.mean().item(
            )  # 因为更新过一次判别器,所以这个假图片的output均值应该比上面的假图片的output均值更接近0才健康
            # Update G
            g_optimizer.step()

            # Output training stats
            if i % 50 == 0:
                print(
                    '[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\treal_img_mean_score: %.4f\tfake_img_mean_score_1/2: %.4f / %.4f'
                    % (epoch, opt.max_epoch, i, len(dataloader), d_err.item(),
                       g_err.item(), D_x, D_G_z1, D_G_z2))

            # Save Losses for plotting later
            G_losses.append(g_err.item())
            D_losses.append(d_err.item())

            writer.add_scalars('dnet_gnet_loss', {
                'G_losses': G_losses[iters],
                'D_losses': D_losses[iters]
            }, iters)

            # Check how the generator is doing by saving G's output on fixed_noise
            if (iters % 500 == 0) or ((epoch == opt.max_epoch) and
                                      (i == len(dataloader))):
                with torch.no_grad(
                ):  # 上下文管理,处于with范围内的tensor待会不反向,所以前向时不用求局部梯度了,节省计算。因为forward时就会把每层对应局部梯度公式求出来
                    fake = gnet(
                        fixed_noise
                    )  #.detach().cpu() 截断再放CPU里没什么特殊用啊,有没有效果一样,只是拷贝一份假图片存放cpu里
                img_list.append(vutils.make_grid(fake, normalize=True))
                '''还不知道合成的图有多少个小图呢'''
                writer.add_image('fake%d' % (iters / 500),
                                 img_list[int(iters / 500)], int(iters / 500))

            iters += 1

    torch.save(dnet.state_dict(), 'dnet.pth')
    torch.save(gnet.state_dict(), 'gnet.pth')

    writer.close()
    '''