Esempio n. 1
0
def main_fixed_mask(args):

    device = torch.device("cuda:" + str(args.device))
    dataset = PygNodePropPredDataset(name=args.dataset)
    data = dataset[0]
    split_idx = dataset.get_idx_split()
    evaluator = Evaluator(args.dataset)

    x = data.x.to(device)
    y_true = data.y.to(device)
    train_idx = split_idx['train'].to(device)

    edge_index = data.edge_index.to(device)
    edge_index = to_undirected(edge_index, data.num_nodes)

    if args.self_loop:
        edge_index = add_self_loops(edge_index, num_nodes=data.num_nodes)[0]

    args.in_channels = data.x.size(-1)
    args.num_tasks = dataset.num_classes

    model = DeeperGCN(args).to(device)
    pruning.add_mask(model, args.num_layers)
    
    for name, param in model.named_parameters():
        if 'mask' in name:
            param.requires_grad = False

    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
    results = {'highest_valid': 0, 'final_train': 0, 'final_test': 0, 'highest_train': 0, 'epoch': 0}
    
    start_epoch = 1
    for epoch in range(start_epoch, args.epochs + 1):
    
        epoch_loss = train_fixed(model, x, edge_index, y_true, train_idx, optimizer, args)
        result = test(model, x, edge_index, y_true, split_idx, evaluator)
        train_accuracy, valid_accuracy, test_accuracy = result

        if valid_accuracy > results['highest_valid']:
            results['highest_valid'] = valid_accuracy
            results['final_train'] = train_accuracy
            results['final_test'] = test_accuracy
            results['epoch'] = epoch

        print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' | ' +
              'Baseline (FIX Mask) Epoch:[{}/{}]\t LOSS:[{:.4f}] Train :[{:.2f}] Valid:[{:.2f}] Test:[{:.2f}] | Update Test:[{:.2f}] at epoch:[{}]'
              .format(epoch, args.epochs, epoch_loss, train_accuracy * 100,
                                                               valid_accuracy * 100,
                                                               test_accuracy * 100, 
                                                               results['final_test'] * 100,
                                                               results['epoch']))
    print("=" * 120)
    print("syd final: Baseline, Train:[{:.2f}]  Best Val:[{:.2f}] at epoch:[{}] | Final Test Acc:[{:.2f}]"
        .format(            results['final_train'] * 100,
                            results['highest_valid'] * 100,
                            results['epoch'],
                            results['final_test'] * 100))
    print("=" * 120)
Esempio n. 2
0
def main():

    args = ArgsInit().save_exp()

    if args.use_gpu:
        device = torch.device("cuda:" +
                              str(args.device)) if torch.cuda.is_available(
                              ) else torch.device("cpu")
    else:
        device = torch.device('cpu')

    dataset = PygNodePropPredDataset(name=args.dataset, root=args.data_folder)
    graph = dataset[0]

    adj = SparseTensor(row=graph.edge_index[0], col=graph.edge_index[1])

    if args.self_loop:
        adj = adj.set_diag()
        graph.edge_index = add_self_loops(edge_index=graph.edge_index,
                                          num_nodes=graph.num_nodes)[0]
    split_idx = dataset.get_idx_split()
    train_idx = split_idx["train"].tolist()

    evaluator = Evaluator(args.dataset)

    sub_dir = 'random-train_{}-full_batch_test'.format(args.cluster_number)
    logging.info(sub_dir)

    log_dir = os.path.join(args.save, "tensorboard/")
    writer = SummaryWriter(log_dir=log_dir)

    args.in_channels = graph.x.size(-1)
    args.num_tasks = dataset.num_classes

    logging.info('%s' % args)

    model = DeeperGCN(args).to(device)

    logging.info(model)

    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

    results = {
        'highest_valid': 0,
        'final_train': 0,
        'final_test': 0,
        'highest_train': 0
    }

    start_time = time.time()

    for epoch in range(1, args.epochs + 1):
        # generate batches
        parts = random_partition_graph(graph.num_nodes,
                                       cluster_number=args.cluster_number)
        data = generate_sub_graphs(adj,
                                   parts,
                                   cluster_number=args.cluster_number)

        # epoch_loss = train(data, model, graph.x, graph.y, train_idx, optimizer, device)
        epoch_loss = train_flag(data, model, graph.x, graph.y, train_idx,
                                optimizer, device, args)

        logging.info('Epoch {}, training loss {:.4f}'.format(
            epoch, epoch_loss))
        writer.add_scalar("Loss/train", epoch_loss, epoch)
        model.print_params(epoch=epoch)

        # if epoch % args.eval_epochs == 0:
        #     save_ckpt(model, optimizer,
        #               round(epoch_loss, 4), epoch,
        #               args.model_save_path,
        #               sub_dir, name_post=f'epoch{epoch}')
        #     logging.info(f"Epoch {epoch}, saved model to checkpoint folder {args.model_save_path}")

        if epoch % args.eval_epochs == 0:
            # save_ckpt(model, optimizer,
            #           round(epoch_loss, 4), epoch,
            #           args.model_save_path,
            #           sub_dir, name_post='final')
            # logging.info(f"Saved model to checkpoint folder {args.model_save_path}")

            logging.info(f'---- Evaluating at epoch {epoch} ----')
            res = test_with_partition(model,
                                      graph,
                                      adj,
                                      split_idx,
                                      num_clusters=args.eval_cluster_number,
                                      partition_method=args.partition_method,
                                      evaluator=evaluator,
                                      device=device)

            # result = test(model, graph.x, graph.edge_index, graph.y, split_idx, evaluator)

            logging.info(res)
            logging.info(f"---------------------------------")

            train_accuracy, valid_accuracy, test_accuracy = res[
                "train_acc"], res["valid_acc"], res["test_acc"]
            writer.add_scalar("Acc/train", train_accuracy)
            writer.add_scalar("Acc/dev", valid_accuracy)

            if train_accuracy > results['highest_train']:
                results['highest_train'] = train_accuracy

            if valid_accuracy > results['highest_valid']:
                results['highest_valid'] = valid_accuracy
                results['final_train'] = train_accuracy
                results['final_test'] = test_accuracy

                save_ckpt(model,
                          optimizer,
                          round(epoch_loss, 4),
                          epoch,
                          args.model_save_path,
                          sub_dir,
                          name_post='valid_best')
                logging.info(
                    f"Saved better model to checkpoint folder {args.model_save_path}"
                )

    logging.info("%s" % results)

    end_time = time.time()
    total_time = end_time - start_time
    logging.info('Total time: {}'.format(
        time.strftime('%H:%M:%S', time.gmtime(total_time))))
dic = torch.load('/Data/leo/Pixel2Mesh_3d/2dTo3d/wandb/run-20210126_131356-1bkxbzmf/files/dic_checkpoint')
gcn1.load_state_dict(dic['gcn_state_dict'][0])
gcn1.train()
gcn2.load_state_dict(dic['gcn_state_dict'][1])
gcn2.train()
gcn3.load_state_dict(dic['gcn_state_dict'][2])
gcn3.train()
image_model.load_state_dict(dic['cnn_state_dic'])
image_model.train()
fe.load_state_dict(dic['fe_state_dic'])
fe.train()
#optimizer.load_state_dict(dic['optimizer_state_dict'])
#epoch = checkpoint['epoch']
#loss = checkpoint['loss']

optimizer = torch.optim.Adam(list(gcn1.parameters()) +
                             list(gcn2.parameters()) +
                             list(gcn3.parameters()) +
                             list(image_model.parameters()), lr=5e-5)
#scheduler = MultiStepLR(optimizer, milestones=[5, 10, 30, 80], gamma=0.3)



w_chamfer = 1.0
# Weight for mesh edge loss
w_edge = 0.1#1.0
# Weight for mesh normal consistency
w_normal = 1.6e-4#0.01
# Weight for mesh laplacian smoothing
w_laplacian = 0.3#0.1
# Plot period for the losses
Esempio n. 4
0
def main_fixed_mask(args, imp_num, final_state_dict=None, resume_train_ckpt=None):

    device = torch.device("cuda:" + str(args.device))
    dataset = OGBNDataset(dataset_name=args.dataset)
    nf_path = dataset.extract_node_features(args.aggr)

    args.num_tasks = dataset.num_tasks
    args.nf_path = nf_path

    evaluator = Evaluator(args.dataset)
    criterion = torch.nn.BCEWithLogitsLoss()

    valid_data_list = []
    for i in range(args.num_evals):

        parts = dataset.random_partition_graph(dataset.total_no_of_nodes, cluster_number=args.valid_cluster_number)
        valid_data = dataset.generate_sub_graphs(parts, cluster_number=args.valid_cluster_number)
        valid_data_list.append(valid_data)

    print("-" * 120)
    model = DeeperGCN(args).to(device)
    pruning.add_mask(model)

    if final_state_dict is not None:
        
        pruning.retrain_operation(dataset, model, final_state_dict)
        adj_spar, wei_spar = pruning.print_sparsity(dataset, model)

    for name, param in model.named_parameters():
        if 'mask' in name:
            param.requires_grad = False

    optimizer = optim.Adam(model.parameters(), lr=args.lr)
    results = {'highest_valid': 0, 'final_train': 0, 'final_test': 0, 'highest_train': 0, 'epoch':0}
    results['adj_spar'] = adj_spar
    results['wei_spar'] = wei_spar
    
    start_epoch = 1
    if resume_train_ckpt:
        dataset.adj = resume_train_ckpt['adj']
        start_epoch = resume_train_ckpt['epoch']
        rewind_weight_mask = resume_train_ckpt['rewind_weight_mask']
        ori_model_dict = model.state_dict()
        over_lap = {k : v for k, v in resume_train_ckpt['model_state_dict'].items() if k in ori_model_dict.keys()}
        ori_model_dict.update(over_lap)
        model.load_state_dict(ori_model_dict)
        print("Resume at IMP:[{}] epoch:[{}] len:[{}/{}]!".format(imp_num, resume_train_ckpt['epoch'], len(over_lap.keys()), len(ori_model_dict.keys())))
        optimizer.load_state_dict(resume_train_ckpt['optimizer_state_dict'])
        adj_spar, wei_spar = pruning.print_sparsity(dataset, model)
    
    for epoch in range(start_epoch, args.epochs + 1):
        # do random partition every epoch
        t0 = time.time()
        train_parts = dataset.random_partition_graph(dataset.total_no_of_nodes, cluster_number=args.cluster_number)
        data = dataset.generate_sub_graphs(train_parts, cluster_number=args.cluster_number, ifmask=True)
        epoch_loss = train.train_fixed(data, dataset, model, optimizer, criterion, device, args)
        result = train.multi_evaluate(valid_data_list, dataset, model, evaluator, device)

        train_result = result['train']['rocauc']
        valid_result = result['valid']['rocauc']
        test_result = result['test']['rocauc']

        if valid_result > results['highest_valid']:
            results['highest_valid'] = valid_result
            results['final_train'] = train_result
            results['final_test'] = test_result
            results['epoch'] = epoch
            final_state_dict = pruning.save_all(dataset, 
                                                model, 
                                                None, 
                                                optimizer, 
                                                imp_num, 
                                                epoch, 
                                                args.model_save_path, 
                                                'IMP{}_fixed_ckpt'.format(imp_num))
        epoch_time = (time.time() - t0) / 60
        print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' | ' +
              'IMP:[{}] (FIX Mask) Epoch[{}/{}] LOSS[{:.4f}] Train[{:.2f}] Valid[{:.2f}] Test[{:.2f}] | Update Test[{:.2f}] at epoch[{}] | Adj[{:.2f}%] Wei[{:.2f}%] Time[{:.2f}min]'
              .format(imp_num, epoch, args.epochs, epoch_loss, train_result * 100,
                                                               valid_result * 100,
                                                               test_result * 100,
                                                               results['final_test'] * 100,
                                                               results['epoch'],
                                                               results['adj_spar'] * 100,
                                                               results['wei_spar'] * 100,
                                                               epoch_time))
    print("=" * 120)
    print("INFO final: IMP:[{}], Train:[{:.2f}]  Best Val:[{:.2f}] at epoch:[{}] | Final Test Acc:[{:.2f}] | Adj:[{:.2f}%] Wei:[{:.2f}%]"
        .format(imp_num,    results['final_train'] * 100,
                            results['highest_valid'] * 100,
                            results['epoch'],
                            results['final_test'] * 100,
                            results['adj_spar'] * 100,
                            results['wei_spar'] * 100))
    print("=" * 120)
Esempio n. 5
0
def main():
    args = ArgsInit().save_exp()

    if args.use_gpu:
        device = torch.device("cuda:" +
                              str(args.device)) if torch.cuda.is_available(
                              ) else torch.device("cpu")
    else:
        device = torch.device('cpu')

    sub_dir = 'BS_{}'.format(args.batch_size)

    if args.not_extract_node_feature:
        dataset = PygGraphPropPredDataset(name=args.dataset,
                                          transform=add_zeros)
    else:
        if args.aggr == 'add':
            dataset = PygGraphPropPredDataset(
                name=args.dataset, transform=extract_node_feature_add)
        elif args.aggr == 'mean':
            dataset = PygGraphPropPredDataset(
                name=args.dataset, transform=extract_node_feature_mean)
        elif args.aggr == 'max':
            dataset = PygGraphPropPredDataset(
                name=args.dataset, transform=extract_node_feature_max)
        else:
            raise Exception('Unknown Aggregation Type')

        sub_dir = sub_dir + '-NF_{}'.format(args.aggr)

    args.num_tasks = dataset.num_classes
    evaluator = Evaluator(args.dataset)

    logging.info('%s' % args)

    split_idx = dataset.get_idx_split()

    train_loader = DataLoader(dataset[split_idx["train"]],
                              batch_size=args.batch_size,
                              shuffle=True,
                              num_workers=args.num_workers)
    valid_loader = DataLoader(dataset[split_idx["valid"]],
                              batch_size=args.batch_size,
                              shuffle=False,
                              num_workers=args.num_workers)
    test_loader = DataLoader(dataset[split_idx["test"]],
                             batch_size=args.batch_size,
                             shuffle=False,
                             num_workers=args.num_workers)

    model = DeeperGCN(args).to(device)

    logging.info(model)

    optimizer = optim.Adam(model.parameters(), lr=args.lr)
    criterion = torch.nn.CrossEntropyLoss()

    results = {
        'highest_valid': 0,
        'final_train': 0,
        'final_test': 0,
        'highest_train': 0
    }

    start_time = time.time()

    evaluate = True

    for epoch in range(1, args.epochs + 1):
        logging.info("=====Epoch {}".format(epoch))
        logging.info('Training...')

        epoch_loss = train(model, device, train_loader, optimizer, criterion)

        if args.num_layers > args.num_layers_threshold:
            if epoch % args.eval_steps != 0:
                evaluate = False
            else:
                evaluate = True

        model.print_params(epoch=epoch)

        if evaluate:

            logging.info('Evaluating...')

            train_accuracy = eval(model, device, train_loader, evaluator)
            valid_accuracy = eval(model, device, valid_loader, evaluator)
            test_accuracy = eval(model, device, test_loader, evaluator)

            logging.info({
                'Train': train_accuracy,
                'Validation': valid_accuracy,
                'Test': test_accuracy
            })

            if train_accuracy > results['highest_train']:

                results['highest_train'] = train_accuracy

            if valid_accuracy > results['highest_valid']:
                results['highest_valid'] = valid_accuracy
                results['final_train'] = train_accuracy
                results['final_test'] = test_accuracy

                save_ckpt(model,
                          optimizer,
                          round(epoch_loss, 4),
                          epoch,
                          args.model_save_path,
                          sub_dir,
                          name_post='valid_best')

    logging.info("%s" % results)

    end_time = time.time()
    total_time = end_time - start_time
    logging.info('Total time: {}'.format(
        time.strftime('%H:%M:%S', time.gmtime(total_time))))
Esempio n. 6
0
def main_fixed_mask(args,
                    imp_num,
                    adj_percent,
                    wei_percent,
                    resume_train_ckpt=None):

    device = torch.device("cuda:" + str(args.device))
    dataset = PygNodePropPredDataset(name=args.dataset)
    data = dataset[0]
    split_idx = dataset.get_idx_split()
    evaluator = Evaluator(args.dataset)

    x = data.x.to(device)
    y_true = data.y.to(device)
    train_idx = split_idx['train'].to(device)

    edge_index = data.edge_index.to(device)
    edge_index = to_undirected(edge_index, data.num_nodes)

    if args.self_loop:
        edge_index = add_self_loops(edge_index, num_nodes=data.num_nodes)[0]

    args.in_channels = data.x.size(-1)
    args.num_tasks = dataset.num_classes

    model = DeeperGCN(args).to(device)
    pruning.add_mask(model, args.num_layers)
    pruning.random_pruning(model, args, adj_percent, wei_percent)
    adj_spar, wei_spar = pruning.print_sparsity(model, args)

    for name, param in model.named_parameters():
        if 'mask' in name:
            param.requires_grad = False

    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
    results = {
        'highest_valid': 0,
        'final_train': 0,
        'final_test': 0,
        'highest_train': 0,
        'epoch': 0
    }
    results['adj_spar'] = adj_spar
    results['wei_spar'] = wei_spar

    start_epoch = 1
    if resume_train_ckpt:

        start_epoch = resume_train_ckpt['epoch']
        ori_model_dict = model.state_dict()
        over_lap = {
            k: v
            for k, v in resume_train_ckpt['model_state_dict'].items()
            if k in ori_model_dict.keys()
        }
        ori_model_dict.update(over_lap)
        model.load_state_dict(ori_model_dict)
        print("(RP FIXED MASK) Resume at epoch:[{}] len:[{}/{}]!".format(
            resume_train_ckpt['epoch'], len(over_lap.keys()),
            len(ori_model_dict.keys())))
        optimizer.load_state_dict(resume_train_ckpt['optimizer_state_dict'])
        adj_spar, wei_spar = pruning.print_sparsity(model, args)

    for epoch in range(start_epoch, args.epochs + 1):

        epoch_loss = train_fixed(model, x, edge_index, y_true, train_idx,
                                 optimizer, args)
        result = test(model, x, edge_index, y_true, split_idx, evaluator)
        train_accuracy, valid_accuracy, test_accuracy = result

        if valid_accuracy > results['highest_valid']:
            results['highest_valid'] = valid_accuracy
            results['final_train'] = train_accuracy
            results['final_test'] = test_accuracy
            results['epoch'] = epoch
            pruning.save_all(model, None, optimizer, imp_num, epoch,
                             args.model_save_path,
                             'RP{}_fixed_ckpt'.format(imp_num))

        print(
            time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' | ' +
            'RP:[{}] (FIX Mask) Epoch:[{}/{}]\t LOSS:[{:.4f}] Train :[{:.2f}] Valid:[{:.2f}] Test:[{:.2f}] | Update Test:[{:.2f}] at epoch:[{}]'
            .format(imp_num, epoch, args.epochs, epoch_loss, train_accuracy *
                    100, valid_accuracy * 100, test_accuracy *
                    100, results['final_test'] * 100, results['epoch']))
    print("=" * 120)
    print(
        "syd final: RP:[{}], Train:[{:.2f}]  Best Val:[{:.2f}] at epoch:[{}] | Final Test Acc:[{:.2f}] Adj:[{:.2f}%] Wei:[{:.2f}%]"
        .format(imp_num, results['final_train'] * 100,
                results['highest_valid'] * 100, results['epoch'],
                results['final_test'] * 100, results['adj_spar'],
                results['wei_spar']))
    print("=" * 120)
Esempio n. 7
0
def main(args):

    device = torch.device("cuda:" + str(args.device))
    dataset = PygLinkPropPredDataset(name=args.dataset)
    data = dataset[0]

    # Data(edge_index=[2, 2358104], edge_weight=[2358104, 1], edge_year=[2358104, 1], x=[235868, 128])
    split_edge = dataset.get_edge_split()
    evaluator = Evaluator(args.dataset)

    x = data.x.to(device)

    edge_index = data.edge_index.to(device)

    args.in_channels = data.x.size(-1)
    args.num_tasks = 1

    model = DeeperGCN(args).to(device)
    predictor = LinkPredictor(args).to(device)

    logging.info(model)
    logging.info(predictor)

    optimizer = torch.optim.Adam(list(model.parameters()) +
                                 list(predictor.parameters()),
                                 lr=args.lr)

    results = {}
    keys = ['highest_valid', 'final_train', 'final_test', 'highest_train']
    hits = ['Hits@10', 'Hits@50', 'Hits@100']

    for key in keys:
        results[key] = {k: 0 for k in hits}

    start_time = time.time()
    for epoch in range(1, args.epochs + 1):

        epoch_loss = train.train(model, predictor, x, edge_index, split_edge,
                                 optimizer, args.batch_size)
        logging.info('Epoch {}, training loss {:.4f}'.format(
            epoch, epoch_loss))
        result = train.test(model, predictor, x, edge_index, split_edge,
                            evaluator, args.batch_size)

        for k in hits:
            # return a tuple
            train_result, valid_result, test_result = result[k]

            if train_result > results['highest_train'][k]:
                results['highest_train'][k] = train_result

            if valid_result > results['highest_valid'][k]:
                results['highest_valid'][k] = valid_result
                results['final_train'][k] = train_result
                results['final_test'][k] = test_result

                save_ckpt(model,
                          optimizer,
                          round(epoch_loss, 4),
                          epoch,
                          args.model_save_path,
                          k,
                          name_post='valid_best')
                save_ckpt(predictor,
                          optimizer,
                          round(epoch_loss, 4),
                          epoch,
                          args.model_save_path,
                          k,
                          name_post='valid_best_link_predictor')

        logging.info(result)

    logging.info("%s" % results)

    end_time = time.time()
    total_time = end_time - start_time
    time_used = 'Total time: {}'.format(
        time.strftime('%H:%M:%S', time.gmtime(total_time)))
    logging.info(time_used)
Esempio n. 8
0
def main():

    args = ArgsInit().save_exp()

    if args.use_gpu:
        device = torch.device("cuda:" +
                              str(args.device)) if torch.cuda.is_available(
                              ) else torch.device("cpu")
    else:
        device = torch.device('cpu')

    sub_dir = 'BS_{}-NF_{}'.format(args.batch_size, args.feature)

    dataset = PygGraphPropPredDataset(name=args.dataset)
    args.num_tasks = dataset.num_tasks
    logging.info('%s' % args)

    if args.feature == 'full':
        pass
    elif args.feature == 'simple':
        print('using simple feature')
        # only retain the top two node/edge features
        dataset.data.x = dataset.data.x[:, :2]
        dataset.data.edge_attr = dataset.data.edge_attr[:, :2]

    evaluator = Evaluator(args.dataset)
    split_idx = dataset.get_idx_split()

    train_loader = DataLoader(dataset[split_idx["train"]],
                              batch_size=args.batch_size,
                              shuffle=True,
                              num_workers=args.num_workers)
    valid_loader = DataLoader(dataset[split_idx["valid"]],
                              batch_size=args.batch_size,
                              shuffle=False,
                              num_workers=args.num_workers)
    test_loader = DataLoader(dataset[split_idx["test"]],
                             batch_size=args.batch_size,
                             shuffle=False,
                             num_workers=args.num_workers)

    model = DeeperGCN(args).to(device)

    logging.info(model)

    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    results = {
        'highest_valid': 0,
        'final_train': 0,
        'final_test': 0,
        'highest_train': 0
    }

    start_time = time.time()

    for epoch in range(1, args.epochs + 1):
        logging.info("=====Epoch {}".format(epoch))
        logging.info('Training...')

        # epoch_loss = train(model, device, train_loader, optimizer, dataset.task_type)
        epoch_loss = train_flag(model, device, train_loader, optimizer,
                                dataset.task_type, args)

        logging.info('Evaluating...')
        train_result = eval(model, device, train_loader,
                            evaluator)[dataset.eval_metric]
        valid_result = eval(model, device, valid_loader,
                            evaluator)[dataset.eval_metric]
        test_result = eval(model, device, test_loader,
                           evaluator)[dataset.eval_metric]

        logging.info({
            'Train': train_result,
            'Validation': valid_result,
            'Test': test_result
        })

        model.print_params(epoch=epoch)

        if train_result > results['highest_train']:

            results['highest_train'] = train_result

        if valid_result > results['highest_valid']:
            results['highest_valid'] = valid_result
            results['final_train'] = train_result
            results['final_test'] = test_result

            # save_ckpt(model, optimizer,
            #           round(epoch_loss, 4), epoch,
            #           args.model_save_path,
            #           sub_dir, name_post='valid_best')

    logging.info("%s" % results)

    end_time = time.time()
    total_time = end_time - start_time
    logging.info('Total time: {}'.format(
        time.strftime('%H:%M:%S', time.gmtime(total_time))))
Esempio n. 9
0
def main():
    args = ArgsInit().save_exp()

    if args.use_gpu:
        device = torch.device("cuda:" +
                              str(args.device)) if torch.cuda.is_available(
                              ) else torch.device("cpu")
    else:
        device = torch.device("cpu")

    logging.info('%s' % device)

    dataset = OGBNDataset(dataset_name=args.dataset)
    # extract initial node features
    nf_path = dataset.extract_node_features(args.aggr)

    args.num_tasks = dataset.num_tasks
    args.nf_path = nf_path

    logging.info('%s' % args)

    evaluator = Evaluator(args.dataset)
    criterion = torch.nn.BCEWithLogitsLoss()

    valid_data_list = []

    for i in range(args.num_evals):

        parts = dataset.random_partition_graph(
            dataset.total_no_of_nodes,
            cluster_number=args.valid_cluster_number)
        valid_data = dataset.generate_sub_graphs(
            parts, cluster_number=args.valid_cluster_number)
        valid_data_list.append(valid_data)

    sub_dir = 'random-train_{}-test_{}-num_evals_{}'.format(
        args.cluster_number, args.valid_cluster_number, args.num_evals)
    logging.info(sub_dir)

    model = DeeperGCN(args).to(device)
    optimizer = optim.Adam(model.parameters(), lr=args.lr)
    results = {
        'highest_valid': 0,
        'final_train': 0,
        'final_test': 0,
        'highest_train': 0
    }
    start_time = time.time()

    for epoch in range(1, args.epochs + 1):
        # do random partition every epoch
        train_parts = dataset.random_partition_graph(
            dataset.total_no_of_nodes, cluster_number=args.cluster_number)
        data = dataset.generate_sub_graphs(train_parts,
                                           cluster_number=args.cluster_number,
                                           ifmask=True)

        epoch_loss = train(data, dataset, model, optimizer, criterion, device)
        logging.info('Epoch {}, training loss {:.4f}'.format(
            epoch, epoch_loss))

        model.print_params(epoch=epoch)

        result = multi_evaluate(valid_data_list, dataset, model, evaluator,
                                device)

        if epoch % 5 == 0:
            logging.info('%s' % result)

        train_result = result['train']['rocauc']
        valid_result = result['valid']['rocauc']
        test_result = result['test']['rocauc']

        if valid_result > results['highest_valid']:
            results['highest_valid'] = valid_result
            results['final_train'] = train_result
            results['final_test'] = test_result

            save_ckpt(model,
                      optimizer,
                      round(epoch_loss, 4),
                      epoch,
                      args.model_save_path,
                      sub_dir,
                      name_post='valid_best')

        if train_result > results['highest_train']:
            results['highest_train'] = train_result

    logging.info("%s" % results)

    end_time = time.time()
    total_time = end_time - start_time
    logging.info('Total time: {}'.format(
        time.strftime('%H:%M:%S', time.gmtime(total_time))))
Esempio n. 10
0
def main():

    args = ArgsInit().save_exp()

    if args.use_tensor_board:
        writer = SummaryWriter(log_dir=args.save)

    if args.use_gpu:
        device = torch.device("cuda:" +
                              str(args.device)) if torch.cuda.is_available(
                              ) else torch.device("cpu")
    else:
        device = torch.device('cpu')

    dataset = PygLinkPropPredDataset(name=args.dataset)
    data = dataset[0]
    # Data(edge_index=[2, 2358104], edge_weight=[2358104, 1], edge_year=[2358104, 1], x=[235868, 128])
    split_edge = dataset.get_edge_split()
    evaluator = Evaluator(args.dataset)

    x = data.x.to(device)

    edge_index = data.edge_index.to(device)

    args.in_channels = data.x.size(-1)
    args.num_tasks = 1

    logging.info('%s' % args)

    model = DeeperGCN(args).to(device)
    predictor = LinkPredictor(args).to(device)

    logging.info(model)
    logging.info(predictor)

    optimizer = torch.optim.Adam(list(model.parameters()) +
                                 list(predictor.parameters()),
                                 lr=args.lr)

    results = {}
    keys = ['highest_valid', 'final_train', 'final_test', 'highest_train']
    hits = ['Hits@10', 'Hits@50', 'Hits@100']

    for key in keys:
        results[key] = {k: 0 for k in hits}

    start_time = time.time()

    for epoch in range(1, args.epochs + 1):

        epoch_loss = train(model, predictor, x, edge_index, split_edge,
                           optimizer, args.batch_size)
        logging.info('Epoch {}, training loss {:.4f}'.format(
            epoch, epoch_loss))
        model.print_params(epoch=epoch)

        result = test(model, predictor, x, edge_index, split_edge, evaluator,
                      args.batch_size)

        for k in hits:
            # return a tuple
            train_result, valid_result, test_result = result[k]

            if args.use_tensor_board and k == 'Hits@50':
                writer.add_scalar('stats/train_loss', epoch_loss, epoch)
                writer.add_scalar('stats/train_Hits@50', train_result, epoch)
                writer.add_scalar('stats/valid_Hits@50', valid_result, epoch)
                writer.add_scalar('stats/test_Hits@50', test_result, epoch)

            if train_result > results['highest_train'][k]:
                results['highest_train'][k] = train_result

            if valid_result > results['highest_valid'][k]:
                results['highest_valid'][k] = valid_result
                results['final_train'][k] = train_result
                results['final_test'][k] = test_result

                save_ckpt(model,
                          optimizer,
                          round(epoch_loss, 4),
                          epoch,
                          args.model_save_path,
                          k,
                          name_post='valid_best')
                save_ckpt(predictor,
                          optimizer,
                          round(epoch_loss, 4),
                          epoch,
                          args.model_save_path,
                          k,
                          name_post='valid_best_link_predictor')

        logging.info(result)

    logging.info("%s" % results)

    end_time = time.time()
    total_time = end_time - start_time
    time_used = 'Total time: {}'.format(
        time.strftime('%H:%M:%S', time.gmtime(total_time)))
    logging.info(time_used)

#plot_pointcloud(trg_mesh, "Target mesh")
#plot_pointcloud(src_mesh, "Source mesh")
plt.show()

# We will learn to deform the source mesh by offsetting its vertices
# The shape of the deform parameters is equal to the total number of vertices in src_mesh#
#deform_verts = torch.full(block1.verts_packed().shape, 0.0, device=device, requires_grad=True)
#model = GCN()
#print(device)
model = DeeperGCN(3, 128, 3, 5)
model.to(device)

# The optimizer
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
#optimizer = torch.optim.SGD([deform_verts], lr=0.2, momentum=0.9)

# Number of optimization steps
Niter = 3001
# Weight for the chamfer loss
w_chamfer = 1.0
# Weight for mesh edge loss
w_edge = 0.1  #1.0
# Weight for mesh normal consistency
w_normal = 1.6e-4  #0.01
# Weight for mesh laplacian smoothing
w_laplacian = 0.3  #0.1
# Plot period for the losses
plot_period = 250
Esempio n. 12
0
def main():

    args = ArgsInit().save_exp()

    if args.use_gpu:
        device = torch.device("cuda:" +
                              str(args.device)) if torch.cuda.is_available(
                              ) else torch.device("cpu")
    else:
        device = torch.device('cpu')

    dataset = PygNodePropPredDataset(name=args.dataset)
    graph = dataset[0]

    adj = SparseTensor(row=graph.edge_index[0], col=graph.edge_index[1])

    if args.self_loop:
        adj = adj.set_diag()
        graph.edge_index = add_self_loops(edge_index=graph.edge_index,
                                          num_nodes=graph.num_nodes)[0]
    split_idx = dataset.get_idx_split()
    train_idx = split_idx["train"].tolist()

    evaluator = Evaluator(args.dataset)

    sub_dir = 'random-train_{}-full_batch_test'.format(args.cluster_number)
    logging.info(sub_dir)

    args.in_channels = graph.x.size(-1)
    args.num_tasks = dataset.num_classes

    logging.info('%s' % args)

    model = DeeperGCN(args).to(device)

    logging.info(model)

    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

    results = {
        'highest_valid': 0,
        'final_train': 0,
        'final_test': 0,
        'highest_train': 0
    }

    start_time = time.time()

    for epoch in range(1, args.epochs + 1):
        # generate batches
        parts = random_partition_graph(graph.num_nodes,
                                       cluster_number=args.cluster_number)
        data = generate_sub_graphs(adj,
                                   parts,
                                   cluster_number=args.cluster_number)

        epoch_loss = train(data, model, graph.x, graph.y, train_idx, optimizer,
                           device)
        logging.info('Epoch {}, training loss {:.4f}'.format(
            epoch, epoch_loss))
        model.print_params(epoch=epoch)

        if epoch == args.epochs:

            result = test(model, graph.x, graph.edge_index, graph.y, split_idx,
                          evaluator)
            logging.info(result)

            train_accuracy, valid_accuracy, test_accuracy = result

            if train_accuracy > results['highest_train']:
                results['highest_train'] = train_accuracy

            if valid_accuracy > results['highest_valid']:
                results['highest_valid'] = valid_accuracy
                results['final_train'] = train_accuracy
                results['final_test'] = test_accuracy

                save_ckpt(model,
                          optimizer,
                          round(epoch_loss, 4),
                          epoch,
                          args.model_save_path,
                          sub_dir,
                          name_post='valid_best')

    logging.info("%s" % results)

    end_time = time.time()
    total_time = end_time - start_time
    logging.info('Total time: {}'.format(
        time.strftime('%H:%M:%S', time.gmtime(total_time))))
Esempio n. 13
0
def main_get_mask(args, imp_num):

    device = torch.device("cuda:" + str(args.device))
    dataset = PygLinkPropPredDataset(name=args.dataset)
    data = dataset[0]

    # Data(edge_index=[2, 2358104], edge_weight=[2358104, 1], edge_year=[2358104, 1], x=[235868, 128])
    split_edge = dataset.get_edge_split()
    evaluator = Evaluator(args.dataset)

    x = data.x.to(device)

    edge_index = data.edge_index.to(device)

    args.in_channels = data.x.size(-1)
    args.num_tasks = 1

    model = DeeperGCN(args).to(device)
    pruning.add_mask(model, args)

    for name, param in model.named_parameters():
        if 'mask' in name:
            param.requires_grad = False

    predictor = LinkPredictor(args).to(device)
    optimizer = torch.optim.Adam(list(model.parameters()) +
                                 list(predictor.parameters()),
                                 lr=args.lr)

    results = {'epoch': 0}
    keys = ['highest_valid', 'final_train', 'final_test', 'highest_train']
    hits = ['Hits@10', 'Hits@50', 'Hits@100']

    for key in keys:
        results[key] = {k: 0 for k in hits}

    start_epoch = 1
    for epoch in range(start_epoch, args.mask_epochs + 1):

        t0 = time.time()

        epoch_loss = train.train_fixed(model, predictor, x, edge_index,
                                       split_edge, optimizer, args.batch_size,
                                       args)
        result = train.test(model, predictor, x, edge_index, split_edge,
                            evaluator, args.batch_size, args)

        k = 'Hits@50'
        train_result, valid_result, test_result = result[k]

        if train_result > results['highest_train'][k]:
            results['highest_train'][k] = train_result

        if valid_result > results['highest_valid'][k]:
            results['highest_valid'][k] = valid_result
            results['final_train'][k] = train_result
            results['final_test'][k] = test_result
            results['epoch'] = epoch

        epoch_time = (time.time() - t0) / 60
        print(
            time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' | ' +
            'IMP:[{}] (GET Mask) Epoch:[{}/{}] LOSS:[{:.4f}] Train :[{:.2f}] Valid:[{:.2f}] Test:[{:.2f}] | Update Test:[{:.2f}] at epoch:[{}] Time:[{:.2f}min]'
            .format(imp_num, epoch, args.mask_epochs, epoch_loss,
                    train_result * 100, valid_result * 100, test_result *
                    100, results['final_test'][k] *
                    100, results['epoch'], epoch_time))
    print('-' * 100)
    print(
        "syd : IMP:[{}] (FIX Mask) Final Result Train:[{:.2f}]  Valid:[{:.2f}]  Test:[{:.2f}]"
        .format(imp_num, results['final_train'][k] * 100,
                results['highest_valid'][k] * 100,
                results['final_test'][k] * 100))
    print('-' * 100)
Esempio n. 14
0
def main():

    EPOCHS = 1
    NUMBER_OF_SUBGRAPHS = 10
    CKPT_PATH = f'neighbor_deeper_num_{NUMBER_OF_SUBGRAPHS}.pt'
    EXPERIMENT_RES_PATH = f'neighbor_deeper_num_{NUMBER_OF_SUBGRAPHS}_experiment_res.pk'
    args = ArgsInit().args

    if args.use_gpu:
        device = torch.device("cuda:" +
                              str(args.device)) if torch.cuda.is_available(
                              ) else torch.device("cpu")
    else:
        device = torch.device('cpu')

    dataset = PygNodePropPredDataset(name=args.dataset)
    graph = dataset[0]
    print(graph)
    num_parts = NUMBER_OF_SUBGRAPHS
    data_list = list(
        NeighborSubgraphLoader(graph, num_parts=NUMBER_OF_SUBGRAPHS))
    print(f'len of datalist: {len(data_list)}')
    number_of_train = int(0.9 * num_parts)

    train_data_list = data_list[0:number_of_train]
    test_data_list = data_list[number_of_train:]

    print(
        f'Train test split successful, number of train: {len(train_data_list)} | number of test: {len(test_data_list)}'
    )

    args.in_channels = graph.x.size(-1)
    args.num_tasks = dataset.num_classes

    logging.info('%s' % args)

    model = DeeperGCN(args).to(device)

    logging.info(model)

    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

    start_time = time.time()
    epoch_loss_list = []
    epoch_acc_list = []
    highest_acc = 0
    best_model_dict = None
    for epoch in range(1, EPOCHS + 1):

        epoch_loss, epoch_acc = train(data_list, model, optimizer, device)
        epoch_loss_list.append(epoch_loss)
        epoch_acc_list.append(epoch_acc)
        print('Epoch {}, training loss {:.4f} | training acc {}'.format(
            epoch, epoch_loss, epoch_acc))

        test_acc = test(model, test_data_list)
        if test_acc > highest_acc:
            highest_acc = test_acc
            best_model_dict = model.state_dict()

        logging.info(
            f'best test acc: {highest_acc} | saved to path {CKPT_PATH}')

    end_time = time.time()
    total_time = end_time - start_time
    logging.info('Total time: {}'.format(
        time.strftime('%H:%M:%S', time.gmtime(total_time))))

    experiment_result = {}
    experiment_result['Total training time'] = total_time
    experiment_result['Epoch loss list'] = epoch_loss_list
    experiment_result['Epoch acc list'] = epoch_acc_list
    experiment_result['Best test acc'] = highest_acc

    torch.save(best_model_dict, CKPT_PATH)
    with open(EXPERIMENT_RES_PATH, 'wb') as f:
        pk.dump(experiment_result, f)
Esempio n. 15
0
def main_get_mask(args, imp_num, rewind_weight_mask=None, rewind_predict_weight=None, resume_train_ckpt=None):

    device = torch.device("cuda:" + str(args.device))
    dataset = PygLinkPropPredDataset(name=args.dataset)
    data = dataset[0]
    
    # Data(edge_index=[2, 2358104], edge_weight=[2358104, 1], edge_year=[2358104, 1], x=[235868, 128])
    split_edge = dataset.get_edge_split()
    evaluator = Evaluator(args.dataset)

    x = data.x.to(device)

    edge_index = data.edge_index.to(device)

    args.in_channels = data.x.size(-1)
    args.num_tasks = 1

    model = DeeperGCN(args).to(device)
    pruning.add_mask(model, args)
    predictor = LinkPredictor(args).to(device)
    pruning.add_trainable_mask_noise(model, args, c=1e-4)
    optimizer = torch.optim.Adam(list(model.parameters()) + list(predictor.parameters()), lr=args.lr)

    results = {'epoch': 0 }
    keys = ['highest_valid', 'final_train', 'final_test', 'highest_train']
    hits = ['Hits@10', 'Hits@50', 'Hits@100']

    for key in keys:
        results[key] = {k: 0 for k in hits}

    start_epoch = 1
    if resume_train_ckpt:
        
        start_epoch = resume_train_ckpt['epoch']
        rewind_weight_mask = resume_train_ckpt['rewind_weight_mask']
        ori_model_dict = model.state_dict()
        over_lap = {k : v for k, v in resume_train_ckpt['model_state_dict'].items() if k in ori_model_dict.keys()}
        ori_model_dict.update(over_lap)
        model.load_state_dict(ori_model_dict)
        print("Resume at IMP:[{}] epoch:[{}] len:[{}/{}]!".format(imp_num, resume_train_ckpt['epoch'], len(over_lap.keys()), len(ori_model_dict.keys())))
        optimizer.load_state_dict(resume_train_ckpt['optimizer_state_dict'])
        adj_spar, wei_spar = pruning.print_sparsity(model, args)
    else:
        rewind_weight_mask = copy.deepcopy(model.state_dict())
        rewind_predict_weight = copy.deepcopy(predictor.state_dict())

    for epoch in range(start_epoch, args.mask_epochs + 1):

        t0 = time.time()     
        
        epoch_loss, prune_info_dict = train.train_mask(model, predictor, 
                                                                 x, 
                                                                 edge_index, 
                                                                 split_edge, 
                                                                 optimizer, args)

        result = train.test(model, predictor, 
                                   x, 
                                   edge_index, 
                                   split_edge, 
                                   evaluator, 
                                   args.batch_size, args)

        k = 'Hits@50'
        train_result, valid_result, test_result = result[k]
        if train_result > results['highest_train'][k]:
            results['highest_train'][k] = train_result

        if valid_result > results['highest_valid'][k]:
            results['highest_valid'][k] = valid_result
            results['final_train'][k] = train_result
            results['final_test'][k] = test_result
            results['epoch'] = epoch
            pruning.save_all(model, predictor, 
                                    rewind_weight_mask, 
                                    optimizer, 
                                    imp_num, 
                                    epoch, 
                                    args.model_save_path, 
                                    'IMP{}_train_ckpt'.format(imp_num))

        epoch_time = (time.time() - t0) / 60
        print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' | ' +
              'IMP:[{}] (GET Mask) Epoch:[{}/{}] LOSS:[{:.4f}] Train :[{:.2f}] Valid:[{:.2f}] Test:[{:.2f}] | Update Test:[{:.2f}] at epoch:[{}] | Adj[{:.3f}%] Wei[{:.3f}%] Time:[{:.2f}min]'
              .format(imp_num, epoch, args.mask_epochs, 
                                      epoch_loss, 
                                      train_result * 100,
                                      valid_result * 100,
                                      test_result * 100,
                                      results['final_test'][k] * 100,
                                      results['epoch'],
                                      prune_info_dict['adj_spar'], 
                                      prune_info_dict['wei_spar'],
                                      epoch_time))

    rewind_weight_mask, adj_spar, wei_spar = pruning.change(rewind_weight_mask, model, args)
    print('-' * 100)
    print("INFO : IMP:[{}] (GET MASK) Final Result Train:[{:.2f}]  Valid:[{:.2f}]  Test:[{:.2f}] | Adj:[{:.3f}%] Wei:[{:.3f}%]"
        .format(imp_num, results['final_train'][k] * 100,
                         results['highest_valid'][k] * 100,
                         results['final_test'][k] * 100,
                         adj_spar, 
                         wei_spar))
    print('-' * 100)
    return rewind_weight_mask, rewind_predict_weight
Esempio n. 16
0
def main():

    args = ArgsInit().save_exp()

    if args.use_gpu:
        device = torch.device("cuda:" +
                              str(args.device)) if torch.cuda.is_available(
                              ) else torch.device("cpu")
    else:
        device = torch.device('cpu')

    dataset = PygNodePropPredDataset(name=args.dataset)
    data = dataset[0]
    split_idx = dataset.get_idx_split()

    evaluator = Evaluator(args.dataset)

    x = data.x.to(device)
    y_true = data.y.to(device)
    train_idx = split_idx['train'].to(device)

    edge_index = data.edge_index.to(device)
    edge_index = to_undirected(edge_index, data.num_nodes)

    if args.self_loop:
        edge_index = add_self_loops(edge_index, num_nodes=data.num_nodes)[0]

    sub_dir = 'SL_{}'.format(args.self_loop)

    args.in_channels = data.x.size(-1)
    args.num_tasks = dataset.num_classes

    logging.info('%s' % args)

    model = DeeperGCN(args).to(device)

    logging.info(model)

    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

    results = {
        'highest_valid': 0,
        'final_train': 0,
        'final_test': 0,
        'highest_train': 0
    }

    start_time = time.time()

    for epoch in range(1, args.epochs + 1):

        epoch_loss = train(model, x, edge_index, y_true, train_idx, optimizer)
        logging.info('Epoch {}, training loss {:.4f}'.format(
            epoch, epoch_loss))
        model.print_params(epoch=epoch)

        result = test(model, x, edge_index, y_true, split_idx, evaluator)
        logging.info(result)
        train_accuracy, valid_accuracy, test_accuracy = result

        if train_accuracy > results['highest_train']:
            results['highest_train'] = train_accuracy

        if valid_accuracy > results['highest_valid']:
            results['highest_valid'] = valid_accuracy
            results['final_train'] = train_accuracy
            results['final_test'] = test_accuracy

            save_ckpt(model,
                      optimizer,
                      round(epoch_loss, 4),
                      epoch,
                      args.model_save_path,
                      sub_dir,
                      name_post='valid_best')

    logging.info("%s" % results)

    end_time = time.time()
    total_time = end_time - start_time
    logging.info('Total time: {}'.format(
        time.strftime('%H:%M:%S', time.gmtime(total_time))))
Esempio n. 17
0
# We will learn to deform the source mesh by offsetting its vertices
# The shape of the deform parameters is equal to the total number of vertices in src_mesh#
#deform_verts = torch.full(src_mesh.verts_packed().shape, 0.0, device=device, requires_grad=True)
#model = GCN()
print(device)
#TODO: more features
gcn1 = DeeperGCN(3, 128, 3, 12)
gcn1.to(device)
gcn2 = DeeperGCN(128 + 3, 128, 3, 12)
gcn2.to(device)
gcn3 = DeeperGCN(128 + 3, 128, 3, 12)
gcn3.to(device)


# The optimizer
optimizer = torch.optim.Adam(list(gcn1.parameters()) +
                            list(gcn2.parameters()) +
                            list(gcn3.parameters()), lr=0.0001)
#optimizer = torch.optim.SGD([deform_verts], lr=1.0, momentum=0.9)


# Number of optimization steps
Niter = 5001
# Weight for the chamfer loss
w_chamfer = 1.0
# Weight for mesh edge loss
w_edge = 0.1#1.0
# Weight for mesh normal consistency
w_normal = 1.6e-4#0.01
# Weight for mesh laplacian smoothing
w_laplacian = 0.3#0.1
Esempio n. 18
0
def main(args):

    device = torch.device("cuda:" + str(args.device))
    dataset = OGBNDataset(dataset_name=args.dataset)
    nf_path = dataset.extract_node_features(args.aggr)

    args.num_tasks = dataset.num_tasks
    args.nf_path = nf_path

    evaluator = Evaluator(args.dataset)
    criterion = torch.nn.BCEWithLogitsLoss()

    valid_data_list = []
    for i in range(args.num_evals):
        parts = dataset.random_partition_graph(
            dataset.total_no_of_nodes,
            cluster_number=args.valid_cluster_number)
        valid_data = dataset.generate_sub_graphs(
            parts, cluster_number=args.valid_cluster_number)
        valid_data_list.append(valid_data)

    model = DeeperGCN(args).to(device)

    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    results = {
        'highest_valid': 0,
        'final_train': 0,
        'final_test': 0,
        'highest_train': 0,
        'epoch': 0
    }

    start_time = time.time()
    for epoch in range(1, args.epochs + 1):
        # do random partition every epoch
        train_parts = dataset.random_partition_graph(
            dataset.total_no_of_nodes, cluster_number=args.cluster_number)
        data = dataset.generate_sub_graphs(train_parts,
                                           cluster_number=args.cluster_number)

        epoch_loss = train.train_baseline(data, dataset, model, optimizer,
                                          criterion, device, args)
        result = train.multi_evaluate(valid_data_list, dataset, model,
                                      evaluator, device)
        train_result = result['train']['rocauc']
        valid_result = result['valid']['rocauc']
        test_result = result['test']['rocauc']

        if valid_result > results['highest_valid']:
            results['highest_valid'] = valid_result
            results['final_train'] = train_result
            results['final_test'] = test_result
            results['epoch'] = epoch
            save_dir = save_ckpt(model,
                                 optimizer,
                                 round(epoch_loss, 4),
                                 epoch,
                                 args.model_save_path,
                                 name_post='valid_best')

        print(
            time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' | ' +
            '(Baseline) Epoch:[{}/{}] LOSS:[{:.4f}] Train :[{:.2f}] Valid:[{:.2f}] Test:[{:.2f}] | Update Test:[{:.2f}] at epoch:[{}]'
            .format(epoch, args.epochs, epoch_loss, train_result *
                    100, valid_result * 100, test_result *
                    100, results['final_test'] * 100, results['epoch']))
    end_time = time.time()
    total_time = end_time - start_time
    # logging.info('Total time: {}'.format(time.strftime('%H:%M:%S', time.gmtime(total_time))))
    print("=" * 120)
    print(
        "syd final: BASELINE, Train:[{:.2f}]  Best Val:[{:.2f}] at epoch:[{}] | Final Test Acc:[{:.2f}] Total time:[{}]"
        .format(results['final_train'] * 100, results['highest_valid'] * 100,
                results['epoch'], results['final_test'] * 100,
                time.strftime('%H:%M:%S', time.gmtime(total_time))))
    print("=" * 120)
Esempio n. 19
0
def main_fixed_mask(args, imp_num, resume_train_ckpt=None):

    device = torch.device("cuda:" + str(args.device))
    dataset = PygLinkPropPredDataset(name=args.dataset)
    data = dataset[0]
    # Data(edge_index=[2, 2358104], edge_weight=[2358104, 1], edge_year=[2358104, 1], x=[235868, 128])
    split_edge = dataset.get_edge_split()
    evaluator = Evaluator(args.dataset)

    x = data.x.to(device)

    edge_index = data.edge_index.to(device)

    args.in_channels = data.x.size(-1)
    args.num_tasks = 1

    model = DeeperGCN(args).to(device)
    pruning.add_mask(model, args)
    predictor = LinkPredictor(args).to(device)
    
    rewind_weight_mask, adj_spar, wei_spar = pruning.resume_change(resume_train_ckpt, model, args)
    model.load_state_dict(rewind_weight_mask)
    predictor.load_state_dict(resume_train_ckpt['predictor_state_dict'])

    # model.load_state_dict(rewind_weight_mask)
    # predictor.load_state_dict(rewind_predict_weight)
    adj_spar, wei_spar = pruning.print_sparsity(model, args)

    for name, param in model.named_parameters():
        if 'mask' in name:
            param.requires_grad = False

    optimizer = torch.optim.Adam(list(model.parameters()) + list(predictor.parameters()), lr=args.lr)
    #results = {}
    results = {'epoch': 0 }
    keys = ['highest_valid', 'final_train', 'final_test', 'highest_train']
    hits = ['Hits@10', 'Hits@50', 'Hits@100']
    
    for key in keys:
        results[key] = {k: 0 for k in hits}
    results['adj_spar'] = adj_spar
    results['wei_spar'] = wei_spar
    
    start_epoch = 1
    
    for epoch in range(start_epoch, args.fix_epochs + 1):

        t0 = time.time()
        epoch_loss = train.train_fixed(model, predictor, x, edge_index, split_edge, optimizer, args.batch_size, args)
        result = train.test(model, predictor, x, edge_index, split_edge, evaluator, args.batch_size, args)
        # return a tuple
        k = 'Hits@50'
        train_result, valid_result, test_result = result[k]

        if train_result > results['highest_train'][k]:
            results['highest_train'][k] = train_result

        if valid_result > results['highest_valid'][k]:
            results['highest_valid'][k] = valid_result
            results['final_train'][k] = train_result
            results['final_test'][k] = test_result
            results['epoch'] = epoch
            pruning.save_all(model, predictor, 
                                    rewind_weight_mask, 
                                    optimizer, 
                                    imp_num, 
                                    epoch, 
                                    args.model_save_path, 
                                    'IMP{}_fixed_ckpt'.format(imp_num))

        epoch_time = (time.time() - t0) / 60
        print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' | ' +
              'IMP:[{}] (FIX Mask) Epoch:[{}/{}] LOSS:[{:.4f}] Train :[{:.2f}] Valid:[{:.2f}] Test:[{:.2f}] | Update Test:[{:.2f}] at epoch:[{}] Time:[{:.2f}min]'
              .format(imp_num, epoch, args.fix_epochs, epoch_loss, train_result * 100,
                                                               valid_result * 100,
                                                               test_result * 100, 
                                                               results['final_test'][k] * 100,
                                                               results['epoch'],
                                                               epoch_time))
    print("=" * 120)
    print("syd final: IMP:[{}], Train:[{:.2f}]  Best Val:[{:.2f}] at epoch:[{}] | Final Test Acc:[{:.2f}] Adj:[{:.2f}%] Wei:[{:.2f}%]"
        .format(imp_num,    results['final_train'][k] * 100,
                            results['highest_valid'][k] * 100,
                            results['epoch'],
                            results['final_test'][k] * 100,
                            results['adj_spar'],
                            results['wei_spar']))
    print("=" * 120)
Esempio n. 20
0
def main_get_mask(args,
                  imp_num,
                  rewind_weight_mask=None,
                  resume_train_ckpt=None):

    device = torch.device("cuda:" + str(args.device))
    dataset = PygNodePropPredDataset(name=args.dataset)
    data = dataset[0]
    split_idx = dataset.get_idx_split()
    evaluator = Evaluator(args.dataset)

    x = data.x.to(device)
    y_true = data.y.to(device)
    train_idx = split_idx['train'].to(device)

    edge_index = data.edge_index.to(device)
    edge_index = to_undirected(edge_index, data.num_nodes)

    if args.self_loop:
        edge_index = add_self_loops(edge_index, num_nodes=data.num_nodes)[0]

    args.in_channels = data.x.size(-1)
    args.num_tasks = dataset.num_classes

    print("-" * 120)
    model = DeeperGCN(args).to(device)
    pruning.add_mask(model, args.num_layers)

    if rewind_weight_mask:
        model.load_state_dict(rewind_weight_mask)
        adj_spar, wei_spar = pruning.print_sparsity(model, args)

    pruning.add_trainable_mask_noise(model, args, c=1e-5)

    optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
    results = {
        'highest_valid': 0,
        'final_train': 0,
        'final_test': 0,
        'highest_train': 0,
        'epoch': 0
    }

    start_epoch = 1
    if resume_train_ckpt:

        start_epoch = resume_train_ckpt['epoch']
        rewind_weight_mask = resume_train_ckpt['rewind_weight_mask']
        ori_model_dict = model.state_dict()
        over_lap = {
            k: v
            for k, v in resume_train_ckpt['model_state_dict'].items()
            if k in ori_model_dict.keys()
        }
        ori_model_dict.update(over_lap)
        model.load_state_dict(ori_model_dict)
        print("Resume at IMP:[{}] epoch:[{}] len:[{}/{}]!".format(
            imp_num, resume_train_ckpt['epoch'], len(over_lap.keys()),
            len(ori_model_dict.keys())))
        optimizer.load_state_dict(resume_train_ckpt['optimizer_state_dict'])
        adj_spar, wei_spar = pruning.print_sparsity(model, args)
    else:
        rewind_weight_mask = copy.deepcopy(model.state_dict())

    for epoch in range(start_epoch, args.mask_epochs + 1):

        epoch_loss = train(model, x, edge_index, y_true, train_idx, optimizer,
                           args)
        result = test(model, x, edge_index, y_true, split_idx, evaluator)
        train_accuracy, valid_accuracy, test_accuracy = result

        if valid_accuracy > results['highest_valid']:
            results['highest_valid'] = valid_accuracy
            results['final_train'] = train_accuracy
            results['final_test'] = test_accuracy
            results['epoch'] = epoch
            rewind_weight_mask, adj_spar, wei_spar = pruning.get_final_mask_epoch(
                model, rewind_weight_mask, args)
            #pruning.save_all(model, rewind_weight_mask, optimizer, imp_num, epoch, args.model_save_path, 'IMP{}_train_ckpt'.format(imp_num))

        print(
            time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' | ' +
            'IMP:[{}] (GET Mask) Epoch:[{}/{}]\t LOSS:[{:.4f}] Train :[{:.2f}] Valid:[{:.2f}] Test:[{:.2f}] | Update Test:[{:.2f}] at epoch:[{}] | Adj:[{:.2f}%] Wei:[{:.2f}%]'
            .format(imp_num, epoch, args.mask_epochs, epoch_loss,
                    train_accuracy * 100, valid_accuracy * 100, test_accuracy *
                    100, results['final_test'] *
                    100, results['epoch'], adj_spar, wei_spar))
    print('-' * 100)
    print(
        "INFO : IMP:[{}] (GET MASK) Final Result Train:[{:.2f}]  Valid:[{:.2f}]  Test:[{:.2f}] | Adj:[{:.2f}%] Wei:[{:.2f}%] "
        .format(imp_num, results['final_train'] * 100,
                results['highest_valid'] * 100, results['final_test'] * 100,
                adj_spar, wei_spar))
    print('-' * 100)
    return rewind_weight_mask