def main_fixed_mask(args): device = torch.device("cuda:" + str(args.device)) dataset = PygNodePropPredDataset(name=args.dataset) data = dataset[0] split_idx = dataset.get_idx_split() evaluator = Evaluator(args.dataset) x = data.x.to(device) y_true = data.y.to(device) train_idx = split_idx['train'].to(device) edge_index = data.edge_index.to(device) edge_index = to_undirected(edge_index, data.num_nodes) if args.self_loop: edge_index = add_self_loops(edge_index, num_nodes=data.num_nodes)[0] args.in_channels = data.x.size(-1) args.num_tasks = dataset.num_classes model = DeeperGCN(args).to(device) pruning.add_mask(model, args.num_layers) for name, param in model.named_parameters(): if 'mask' in name: param.requires_grad = False optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) results = {'highest_valid': 0, 'final_train': 0, 'final_test': 0, 'highest_train': 0, 'epoch': 0} start_epoch = 1 for epoch in range(start_epoch, args.epochs + 1): epoch_loss = train_fixed(model, x, edge_index, y_true, train_idx, optimizer, args) result = test(model, x, edge_index, y_true, split_idx, evaluator) train_accuracy, valid_accuracy, test_accuracy = result if valid_accuracy > results['highest_valid']: results['highest_valid'] = valid_accuracy results['final_train'] = train_accuracy results['final_test'] = test_accuracy results['epoch'] = epoch print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' | ' + 'Baseline (FIX Mask) Epoch:[{}/{}]\t LOSS:[{:.4f}] Train :[{:.2f}] Valid:[{:.2f}] Test:[{:.2f}] | Update Test:[{:.2f}] at epoch:[{}]' .format(epoch, args.epochs, epoch_loss, train_accuracy * 100, valid_accuracy * 100, test_accuracy * 100, results['final_test'] * 100, results['epoch'])) print("=" * 120) print("syd final: Baseline, Train:[{:.2f}] Best Val:[{:.2f}] at epoch:[{}] | Final Test Acc:[{:.2f}]" .format( results['final_train'] * 100, results['highest_valid'] * 100, results['epoch'], results['final_test'] * 100)) print("=" * 120)
def main(): args = ArgsInit().save_exp() if args.use_gpu: device = torch.device("cuda:" + str(args.device)) if torch.cuda.is_available( ) else torch.device("cpu") else: device = torch.device('cpu') dataset = PygNodePropPredDataset(name=args.dataset, root=args.data_folder) graph = dataset[0] adj = SparseTensor(row=graph.edge_index[0], col=graph.edge_index[1]) if args.self_loop: adj = adj.set_diag() graph.edge_index = add_self_loops(edge_index=graph.edge_index, num_nodes=graph.num_nodes)[0] split_idx = dataset.get_idx_split() train_idx = split_idx["train"].tolist() evaluator = Evaluator(args.dataset) sub_dir = 'random-train_{}-full_batch_test'.format(args.cluster_number) logging.info(sub_dir) log_dir = os.path.join(args.save, "tensorboard/") writer = SummaryWriter(log_dir=log_dir) args.in_channels = graph.x.size(-1) args.num_tasks = dataset.num_classes logging.info('%s' % args) model = DeeperGCN(args).to(device) logging.info(model) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) results = { 'highest_valid': 0, 'final_train': 0, 'final_test': 0, 'highest_train': 0 } start_time = time.time() for epoch in range(1, args.epochs + 1): # generate batches parts = random_partition_graph(graph.num_nodes, cluster_number=args.cluster_number) data = generate_sub_graphs(adj, parts, cluster_number=args.cluster_number) # epoch_loss = train(data, model, graph.x, graph.y, train_idx, optimizer, device) epoch_loss = train_flag(data, model, graph.x, graph.y, train_idx, optimizer, device, args) logging.info('Epoch {}, training loss {:.4f}'.format( epoch, epoch_loss)) writer.add_scalar("Loss/train", epoch_loss, epoch) model.print_params(epoch=epoch) # if epoch % args.eval_epochs == 0: # save_ckpt(model, optimizer, # round(epoch_loss, 4), epoch, # args.model_save_path, # sub_dir, name_post=f'epoch{epoch}') # logging.info(f"Epoch {epoch}, saved model to checkpoint folder {args.model_save_path}") if epoch % args.eval_epochs == 0: # save_ckpt(model, optimizer, # round(epoch_loss, 4), epoch, # args.model_save_path, # sub_dir, name_post='final') # logging.info(f"Saved model to checkpoint folder {args.model_save_path}") logging.info(f'---- Evaluating at epoch {epoch} ----') res = test_with_partition(model, graph, adj, split_idx, num_clusters=args.eval_cluster_number, partition_method=args.partition_method, evaluator=evaluator, device=device) # result = test(model, graph.x, graph.edge_index, graph.y, split_idx, evaluator) logging.info(res) logging.info(f"---------------------------------") train_accuracy, valid_accuracy, test_accuracy = res[ "train_acc"], res["valid_acc"], res["test_acc"] writer.add_scalar("Acc/train", train_accuracy) writer.add_scalar("Acc/dev", valid_accuracy) if train_accuracy > results['highest_train']: results['highest_train'] = train_accuracy if valid_accuracy > results['highest_valid']: results['highest_valid'] = valid_accuracy results['final_train'] = train_accuracy results['final_test'] = test_accuracy save_ckpt(model, optimizer, round(epoch_loss, 4), epoch, args.model_save_path, sub_dir, name_post='valid_best') logging.info( f"Saved better model to checkpoint folder {args.model_save_path}" ) logging.info("%s" % results) end_time = time.time() total_time = end_time - start_time logging.info('Total time: {}'.format( time.strftime('%H:%M:%S', time.gmtime(total_time))))
dic = torch.load('/Data/leo/Pixel2Mesh_3d/2dTo3d/wandb/run-20210126_131356-1bkxbzmf/files/dic_checkpoint') gcn1.load_state_dict(dic['gcn_state_dict'][0]) gcn1.train() gcn2.load_state_dict(dic['gcn_state_dict'][1]) gcn2.train() gcn3.load_state_dict(dic['gcn_state_dict'][2]) gcn3.train() image_model.load_state_dict(dic['cnn_state_dic']) image_model.train() fe.load_state_dict(dic['fe_state_dic']) fe.train() #optimizer.load_state_dict(dic['optimizer_state_dict']) #epoch = checkpoint['epoch'] #loss = checkpoint['loss'] optimizer = torch.optim.Adam(list(gcn1.parameters()) + list(gcn2.parameters()) + list(gcn3.parameters()) + list(image_model.parameters()), lr=5e-5) #scheduler = MultiStepLR(optimizer, milestones=[5, 10, 30, 80], gamma=0.3) w_chamfer = 1.0 # Weight for mesh edge loss w_edge = 0.1#1.0 # Weight for mesh normal consistency w_normal = 1.6e-4#0.01 # Weight for mesh laplacian smoothing w_laplacian = 0.3#0.1 # Plot period for the losses
def main_fixed_mask(args, imp_num, final_state_dict=None, resume_train_ckpt=None): device = torch.device("cuda:" + str(args.device)) dataset = OGBNDataset(dataset_name=args.dataset) nf_path = dataset.extract_node_features(args.aggr) args.num_tasks = dataset.num_tasks args.nf_path = nf_path evaluator = Evaluator(args.dataset) criterion = torch.nn.BCEWithLogitsLoss() valid_data_list = [] for i in range(args.num_evals): parts = dataset.random_partition_graph(dataset.total_no_of_nodes, cluster_number=args.valid_cluster_number) valid_data = dataset.generate_sub_graphs(parts, cluster_number=args.valid_cluster_number) valid_data_list.append(valid_data) print("-" * 120) model = DeeperGCN(args).to(device) pruning.add_mask(model) if final_state_dict is not None: pruning.retrain_operation(dataset, model, final_state_dict) adj_spar, wei_spar = pruning.print_sparsity(dataset, model) for name, param in model.named_parameters(): if 'mask' in name: param.requires_grad = False optimizer = optim.Adam(model.parameters(), lr=args.lr) results = {'highest_valid': 0, 'final_train': 0, 'final_test': 0, 'highest_train': 0, 'epoch':0} results['adj_spar'] = adj_spar results['wei_spar'] = wei_spar start_epoch = 1 if resume_train_ckpt: dataset.adj = resume_train_ckpt['adj'] start_epoch = resume_train_ckpt['epoch'] rewind_weight_mask = resume_train_ckpt['rewind_weight_mask'] ori_model_dict = model.state_dict() over_lap = {k : v for k, v in resume_train_ckpt['model_state_dict'].items() if k in ori_model_dict.keys()} ori_model_dict.update(over_lap) model.load_state_dict(ori_model_dict) print("Resume at IMP:[{}] epoch:[{}] len:[{}/{}]!".format(imp_num, resume_train_ckpt['epoch'], len(over_lap.keys()), len(ori_model_dict.keys()))) optimizer.load_state_dict(resume_train_ckpt['optimizer_state_dict']) adj_spar, wei_spar = pruning.print_sparsity(dataset, model) for epoch in range(start_epoch, args.epochs + 1): # do random partition every epoch t0 = time.time() train_parts = dataset.random_partition_graph(dataset.total_no_of_nodes, cluster_number=args.cluster_number) data = dataset.generate_sub_graphs(train_parts, cluster_number=args.cluster_number, ifmask=True) epoch_loss = train.train_fixed(data, dataset, model, optimizer, criterion, device, args) result = train.multi_evaluate(valid_data_list, dataset, model, evaluator, device) train_result = result['train']['rocauc'] valid_result = result['valid']['rocauc'] test_result = result['test']['rocauc'] if valid_result > results['highest_valid']: results['highest_valid'] = valid_result results['final_train'] = train_result results['final_test'] = test_result results['epoch'] = epoch final_state_dict = pruning.save_all(dataset, model, None, optimizer, imp_num, epoch, args.model_save_path, 'IMP{}_fixed_ckpt'.format(imp_num)) epoch_time = (time.time() - t0) / 60 print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' | ' + 'IMP:[{}] (FIX Mask) Epoch[{}/{}] LOSS[{:.4f}] Train[{:.2f}] Valid[{:.2f}] Test[{:.2f}] | Update Test[{:.2f}] at epoch[{}] | Adj[{:.2f}%] Wei[{:.2f}%] Time[{:.2f}min]' .format(imp_num, epoch, args.epochs, epoch_loss, train_result * 100, valid_result * 100, test_result * 100, results['final_test'] * 100, results['epoch'], results['adj_spar'] * 100, results['wei_spar'] * 100, epoch_time)) print("=" * 120) print("INFO final: IMP:[{}], Train:[{:.2f}] Best Val:[{:.2f}] at epoch:[{}] | Final Test Acc:[{:.2f}] | Adj:[{:.2f}%] Wei:[{:.2f}%]" .format(imp_num, results['final_train'] * 100, results['highest_valid'] * 100, results['epoch'], results['final_test'] * 100, results['adj_spar'] * 100, results['wei_spar'] * 100)) print("=" * 120)
def main(): args = ArgsInit().save_exp() if args.use_gpu: device = torch.device("cuda:" + str(args.device)) if torch.cuda.is_available( ) else torch.device("cpu") else: device = torch.device('cpu') sub_dir = 'BS_{}'.format(args.batch_size) if args.not_extract_node_feature: dataset = PygGraphPropPredDataset(name=args.dataset, transform=add_zeros) else: if args.aggr == 'add': dataset = PygGraphPropPredDataset( name=args.dataset, transform=extract_node_feature_add) elif args.aggr == 'mean': dataset = PygGraphPropPredDataset( name=args.dataset, transform=extract_node_feature_mean) elif args.aggr == 'max': dataset = PygGraphPropPredDataset( name=args.dataset, transform=extract_node_feature_max) else: raise Exception('Unknown Aggregation Type') sub_dir = sub_dir + '-NF_{}'.format(args.aggr) args.num_tasks = dataset.num_classes evaluator = Evaluator(args.dataset) logging.info('%s' % args) split_idx = dataset.get_idx_split() train_loader = DataLoader(dataset[split_idx["train"]], batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers) valid_loader = DataLoader(dataset[split_idx["valid"]], batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) test_loader = DataLoader(dataset[split_idx["test"]], batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) model = DeeperGCN(args).to(device) logging.info(model) optimizer = optim.Adam(model.parameters(), lr=args.lr) criterion = torch.nn.CrossEntropyLoss() results = { 'highest_valid': 0, 'final_train': 0, 'final_test': 0, 'highest_train': 0 } start_time = time.time() evaluate = True for epoch in range(1, args.epochs + 1): logging.info("=====Epoch {}".format(epoch)) logging.info('Training...') epoch_loss = train(model, device, train_loader, optimizer, criterion) if args.num_layers > args.num_layers_threshold: if epoch % args.eval_steps != 0: evaluate = False else: evaluate = True model.print_params(epoch=epoch) if evaluate: logging.info('Evaluating...') train_accuracy = eval(model, device, train_loader, evaluator) valid_accuracy = eval(model, device, valid_loader, evaluator) test_accuracy = eval(model, device, test_loader, evaluator) logging.info({ 'Train': train_accuracy, 'Validation': valid_accuracy, 'Test': test_accuracy }) if train_accuracy > results['highest_train']: results['highest_train'] = train_accuracy if valid_accuracy > results['highest_valid']: results['highest_valid'] = valid_accuracy results['final_train'] = train_accuracy results['final_test'] = test_accuracy save_ckpt(model, optimizer, round(epoch_loss, 4), epoch, args.model_save_path, sub_dir, name_post='valid_best') logging.info("%s" % results) end_time = time.time() total_time = end_time - start_time logging.info('Total time: {}'.format( time.strftime('%H:%M:%S', time.gmtime(total_time))))
def main_fixed_mask(args, imp_num, adj_percent, wei_percent, resume_train_ckpt=None): device = torch.device("cuda:" + str(args.device)) dataset = PygNodePropPredDataset(name=args.dataset) data = dataset[0] split_idx = dataset.get_idx_split() evaluator = Evaluator(args.dataset) x = data.x.to(device) y_true = data.y.to(device) train_idx = split_idx['train'].to(device) edge_index = data.edge_index.to(device) edge_index = to_undirected(edge_index, data.num_nodes) if args.self_loop: edge_index = add_self_loops(edge_index, num_nodes=data.num_nodes)[0] args.in_channels = data.x.size(-1) args.num_tasks = dataset.num_classes model = DeeperGCN(args).to(device) pruning.add_mask(model, args.num_layers) pruning.random_pruning(model, args, adj_percent, wei_percent) adj_spar, wei_spar = pruning.print_sparsity(model, args) for name, param in model.named_parameters(): if 'mask' in name: param.requires_grad = False optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) results = { 'highest_valid': 0, 'final_train': 0, 'final_test': 0, 'highest_train': 0, 'epoch': 0 } results['adj_spar'] = adj_spar results['wei_spar'] = wei_spar start_epoch = 1 if resume_train_ckpt: start_epoch = resume_train_ckpt['epoch'] ori_model_dict = model.state_dict() over_lap = { k: v for k, v in resume_train_ckpt['model_state_dict'].items() if k in ori_model_dict.keys() } ori_model_dict.update(over_lap) model.load_state_dict(ori_model_dict) print("(RP FIXED MASK) Resume at epoch:[{}] len:[{}/{}]!".format( resume_train_ckpt['epoch'], len(over_lap.keys()), len(ori_model_dict.keys()))) optimizer.load_state_dict(resume_train_ckpt['optimizer_state_dict']) adj_spar, wei_spar = pruning.print_sparsity(model, args) for epoch in range(start_epoch, args.epochs + 1): epoch_loss = train_fixed(model, x, edge_index, y_true, train_idx, optimizer, args) result = test(model, x, edge_index, y_true, split_idx, evaluator) train_accuracy, valid_accuracy, test_accuracy = result if valid_accuracy > results['highest_valid']: results['highest_valid'] = valid_accuracy results['final_train'] = train_accuracy results['final_test'] = test_accuracy results['epoch'] = epoch pruning.save_all(model, None, optimizer, imp_num, epoch, args.model_save_path, 'RP{}_fixed_ckpt'.format(imp_num)) print( time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' | ' + 'RP:[{}] (FIX Mask) Epoch:[{}/{}]\t LOSS:[{:.4f}] Train :[{:.2f}] Valid:[{:.2f}] Test:[{:.2f}] | Update Test:[{:.2f}] at epoch:[{}]' .format(imp_num, epoch, args.epochs, epoch_loss, train_accuracy * 100, valid_accuracy * 100, test_accuracy * 100, results['final_test'] * 100, results['epoch'])) print("=" * 120) print( "syd final: RP:[{}], Train:[{:.2f}] Best Val:[{:.2f}] at epoch:[{}] | Final Test Acc:[{:.2f}] Adj:[{:.2f}%] Wei:[{:.2f}%]" .format(imp_num, results['final_train'] * 100, results['highest_valid'] * 100, results['epoch'], results['final_test'] * 100, results['adj_spar'], results['wei_spar'])) print("=" * 120)
def main(args): device = torch.device("cuda:" + str(args.device)) dataset = PygLinkPropPredDataset(name=args.dataset) data = dataset[0] # Data(edge_index=[2, 2358104], edge_weight=[2358104, 1], edge_year=[2358104, 1], x=[235868, 128]) split_edge = dataset.get_edge_split() evaluator = Evaluator(args.dataset) x = data.x.to(device) edge_index = data.edge_index.to(device) args.in_channels = data.x.size(-1) args.num_tasks = 1 model = DeeperGCN(args).to(device) predictor = LinkPredictor(args).to(device) logging.info(model) logging.info(predictor) optimizer = torch.optim.Adam(list(model.parameters()) + list(predictor.parameters()), lr=args.lr) results = {} keys = ['highest_valid', 'final_train', 'final_test', 'highest_train'] hits = ['Hits@10', 'Hits@50', 'Hits@100'] for key in keys: results[key] = {k: 0 for k in hits} start_time = time.time() for epoch in range(1, args.epochs + 1): epoch_loss = train.train(model, predictor, x, edge_index, split_edge, optimizer, args.batch_size) logging.info('Epoch {}, training loss {:.4f}'.format( epoch, epoch_loss)) result = train.test(model, predictor, x, edge_index, split_edge, evaluator, args.batch_size) for k in hits: # return a tuple train_result, valid_result, test_result = result[k] if train_result > results['highest_train'][k]: results['highest_train'][k] = train_result if valid_result > results['highest_valid'][k]: results['highest_valid'][k] = valid_result results['final_train'][k] = train_result results['final_test'][k] = test_result save_ckpt(model, optimizer, round(epoch_loss, 4), epoch, args.model_save_path, k, name_post='valid_best') save_ckpt(predictor, optimizer, round(epoch_loss, 4), epoch, args.model_save_path, k, name_post='valid_best_link_predictor') logging.info(result) logging.info("%s" % results) end_time = time.time() total_time = end_time - start_time time_used = 'Total time: {}'.format( time.strftime('%H:%M:%S', time.gmtime(total_time))) logging.info(time_used)
def main(): args = ArgsInit().save_exp() if args.use_gpu: device = torch.device("cuda:" + str(args.device)) if torch.cuda.is_available( ) else torch.device("cpu") else: device = torch.device('cpu') sub_dir = 'BS_{}-NF_{}'.format(args.batch_size, args.feature) dataset = PygGraphPropPredDataset(name=args.dataset) args.num_tasks = dataset.num_tasks logging.info('%s' % args) if args.feature == 'full': pass elif args.feature == 'simple': print('using simple feature') # only retain the top two node/edge features dataset.data.x = dataset.data.x[:, :2] dataset.data.edge_attr = dataset.data.edge_attr[:, :2] evaluator = Evaluator(args.dataset) split_idx = dataset.get_idx_split() train_loader = DataLoader(dataset[split_idx["train"]], batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers) valid_loader = DataLoader(dataset[split_idx["valid"]], batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) test_loader = DataLoader(dataset[split_idx["test"]], batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) model = DeeperGCN(args).to(device) logging.info(model) optimizer = optim.Adam(model.parameters(), lr=args.lr) results = { 'highest_valid': 0, 'final_train': 0, 'final_test': 0, 'highest_train': 0 } start_time = time.time() for epoch in range(1, args.epochs + 1): logging.info("=====Epoch {}".format(epoch)) logging.info('Training...') # epoch_loss = train(model, device, train_loader, optimizer, dataset.task_type) epoch_loss = train_flag(model, device, train_loader, optimizer, dataset.task_type, args) logging.info('Evaluating...') train_result = eval(model, device, train_loader, evaluator)[dataset.eval_metric] valid_result = eval(model, device, valid_loader, evaluator)[dataset.eval_metric] test_result = eval(model, device, test_loader, evaluator)[dataset.eval_metric] logging.info({ 'Train': train_result, 'Validation': valid_result, 'Test': test_result }) model.print_params(epoch=epoch) if train_result > results['highest_train']: results['highest_train'] = train_result if valid_result > results['highest_valid']: results['highest_valid'] = valid_result results['final_train'] = train_result results['final_test'] = test_result # save_ckpt(model, optimizer, # round(epoch_loss, 4), epoch, # args.model_save_path, # sub_dir, name_post='valid_best') logging.info("%s" % results) end_time = time.time() total_time = end_time - start_time logging.info('Total time: {}'.format( time.strftime('%H:%M:%S', time.gmtime(total_time))))
def main(): args = ArgsInit().save_exp() if args.use_gpu: device = torch.device("cuda:" + str(args.device)) if torch.cuda.is_available( ) else torch.device("cpu") else: device = torch.device("cpu") logging.info('%s' % device) dataset = OGBNDataset(dataset_name=args.dataset) # extract initial node features nf_path = dataset.extract_node_features(args.aggr) args.num_tasks = dataset.num_tasks args.nf_path = nf_path logging.info('%s' % args) evaluator = Evaluator(args.dataset) criterion = torch.nn.BCEWithLogitsLoss() valid_data_list = [] for i in range(args.num_evals): parts = dataset.random_partition_graph( dataset.total_no_of_nodes, cluster_number=args.valid_cluster_number) valid_data = dataset.generate_sub_graphs( parts, cluster_number=args.valid_cluster_number) valid_data_list.append(valid_data) sub_dir = 'random-train_{}-test_{}-num_evals_{}'.format( args.cluster_number, args.valid_cluster_number, args.num_evals) logging.info(sub_dir) model = DeeperGCN(args).to(device) optimizer = optim.Adam(model.parameters(), lr=args.lr) results = { 'highest_valid': 0, 'final_train': 0, 'final_test': 0, 'highest_train': 0 } start_time = time.time() for epoch in range(1, args.epochs + 1): # do random partition every epoch train_parts = dataset.random_partition_graph( dataset.total_no_of_nodes, cluster_number=args.cluster_number) data = dataset.generate_sub_graphs(train_parts, cluster_number=args.cluster_number, ifmask=True) epoch_loss = train(data, dataset, model, optimizer, criterion, device) logging.info('Epoch {}, training loss {:.4f}'.format( epoch, epoch_loss)) model.print_params(epoch=epoch) result = multi_evaluate(valid_data_list, dataset, model, evaluator, device) if epoch % 5 == 0: logging.info('%s' % result) train_result = result['train']['rocauc'] valid_result = result['valid']['rocauc'] test_result = result['test']['rocauc'] if valid_result > results['highest_valid']: results['highest_valid'] = valid_result results['final_train'] = train_result results['final_test'] = test_result save_ckpt(model, optimizer, round(epoch_loss, 4), epoch, args.model_save_path, sub_dir, name_post='valid_best') if train_result > results['highest_train']: results['highest_train'] = train_result logging.info("%s" % results) end_time = time.time() total_time = end_time - start_time logging.info('Total time: {}'.format( time.strftime('%H:%M:%S', time.gmtime(total_time))))
def main(): args = ArgsInit().save_exp() if args.use_tensor_board: writer = SummaryWriter(log_dir=args.save) if args.use_gpu: device = torch.device("cuda:" + str(args.device)) if torch.cuda.is_available( ) else torch.device("cpu") else: device = torch.device('cpu') dataset = PygLinkPropPredDataset(name=args.dataset) data = dataset[0] # Data(edge_index=[2, 2358104], edge_weight=[2358104, 1], edge_year=[2358104, 1], x=[235868, 128]) split_edge = dataset.get_edge_split() evaluator = Evaluator(args.dataset) x = data.x.to(device) edge_index = data.edge_index.to(device) args.in_channels = data.x.size(-1) args.num_tasks = 1 logging.info('%s' % args) model = DeeperGCN(args).to(device) predictor = LinkPredictor(args).to(device) logging.info(model) logging.info(predictor) optimizer = torch.optim.Adam(list(model.parameters()) + list(predictor.parameters()), lr=args.lr) results = {} keys = ['highest_valid', 'final_train', 'final_test', 'highest_train'] hits = ['Hits@10', 'Hits@50', 'Hits@100'] for key in keys: results[key] = {k: 0 for k in hits} start_time = time.time() for epoch in range(1, args.epochs + 1): epoch_loss = train(model, predictor, x, edge_index, split_edge, optimizer, args.batch_size) logging.info('Epoch {}, training loss {:.4f}'.format( epoch, epoch_loss)) model.print_params(epoch=epoch) result = test(model, predictor, x, edge_index, split_edge, evaluator, args.batch_size) for k in hits: # return a tuple train_result, valid_result, test_result = result[k] if args.use_tensor_board and k == 'Hits@50': writer.add_scalar('stats/train_loss', epoch_loss, epoch) writer.add_scalar('stats/train_Hits@50', train_result, epoch) writer.add_scalar('stats/valid_Hits@50', valid_result, epoch) writer.add_scalar('stats/test_Hits@50', test_result, epoch) if train_result > results['highest_train'][k]: results['highest_train'][k] = train_result if valid_result > results['highest_valid'][k]: results['highest_valid'][k] = valid_result results['final_train'][k] = train_result results['final_test'][k] = test_result save_ckpt(model, optimizer, round(epoch_loss, 4), epoch, args.model_save_path, k, name_post='valid_best') save_ckpt(predictor, optimizer, round(epoch_loss, 4), epoch, args.model_save_path, k, name_post='valid_best_link_predictor') logging.info(result) logging.info("%s" % results) end_time = time.time() total_time = end_time - start_time time_used = 'Total time: {}'.format( time.strftime('%H:%M:%S', time.gmtime(total_time))) logging.info(time_used)
#plot_pointcloud(trg_mesh, "Target mesh") #plot_pointcloud(src_mesh, "Source mesh") plt.show() # We will learn to deform the source mesh by offsetting its vertices # The shape of the deform parameters is equal to the total number of vertices in src_mesh# #deform_verts = torch.full(block1.verts_packed().shape, 0.0, device=device, requires_grad=True) #model = GCN() #print(device) model = DeeperGCN(3, 128, 3, 5) model.to(device) # The optimizer optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9) #optimizer = torch.optim.SGD([deform_verts], lr=0.2, momentum=0.9) # Number of optimization steps Niter = 3001 # Weight for the chamfer loss w_chamfer = 1.0 # Weight for mesh edge loss w_edge = 0.1 #1.0 # Weight for mesh normal consistency w_normal = 1.6e-4 #0.01 # Weight for mesh laplacian smoothing w_laplacian = 0.3 #0.1 # Plot period for the losses plot_period = 250
def main(): args = ArgsInit().save_exp() if args.use_gpu: device = torch.device("cuda:" + str(args.device)) if torch.cuda.is_available( ) else torch.device("cpu") else: device = torch.device('cpu') dataset = PygNodePropPredDataset(name=args.dataset) graph = dataset[0] adj = SparseTensor(row=graph.edge_index[0], col=graph.edge_index[1]) if args.self_loop: adj = adj.set_diag() graph.edge_index = add_self_loops(edge_index=graph.edge_index, num_nodes=graph.num_nodes)[0] split_idx = dataset.get_idx_split() train_idx = split_idx["train"].tolist() evaluator = Evaluator(args.dataset) sub_dir = 'random-train_{}-full_batch_test'.format(args.cluster_number) logging.info(sub_dir) args.in_channels = graph.x.size(-1) args.num_tasks = dataset.num_classes logging.info('%s' % args) model = DeeperGCN(args).to(device) logging.info(model) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) results = { 'highest_valid': 0, 'final_train': 0, 'final_test': 0, 'highest_train': 0 } start_time = time.time() for epoch in range(1, args.epochs + 1): # generate batches parts = random_partition_graph(graph.num_nodes, cluster_number=args.cluster_number) data = generate_sub_graphs(adj, parts, cluster_number=args.cluster_number) epoch_loss = train(data, model, graph.x, graph.y, train_idx, optimizer, device) logging.info('Epoch {}, training loss {:.4f}'.format( epoch, epoch_loss)) model.print_params(epoch=epoch) if epoch == args.epochs: result = test(model, graph.x, graph.edge_index, graph.y, split_idx, evaluator) logging.info(result) train_accuracy, valid_accuracy, test_accuracy = result if train_accuracy > results['highest_train']: results['highest_train'] = train_accuracy if valid_accuracy > results['highest_valid']: results['highest_valid'] = valid_accuracy results['final_train'] = train_accuracy results['final_test'] = test_accuracy save_ckpt(model, optimizer, round(epoch_loss, 4), epoch, args.model_save_path, sub_dir, name_post='valid_best') logging.info("%s" % results) end_time = time.time() total_time = end_time - start_time logging.info('Total time: {}'.format( time.strftime('%H:%M:%S', time.gmtime(total_time))))
def main_get_mask(args, imp_num): device = torch.device("cuda:" + str(args.device)) dataset = PygLinkPropPredDataset(name=args.dataset) data = dataset[0] # Data(edge_index=[2, 2358104], edge_weight=[2358104, 1], edge_year=[2358104, 1], x=[235868, 128]) split_edge = dataset.get_edge_split() evaluator = Evaluator(args.dataset) x = data.x.to(device) edge_index = data.edge_index.to(device) args.in_channels = data.x.size(-1) args.num_tasks = 1 model = DeeperGCN(args).to(device) pruning.add_mask(model, args) for name, param in model.named_parameters(): if 'mask' in name: param.requires_grad = False predictor = LinkPredictor(args).to(device) optimizer = torch.optim.Adam(list(model.parameters()) + list(predictor.parameters()), lr=args.lr) results = {'epoch': 0} keys = ['highest_valid', 'final_train', 'final_test', 'highest_train'] hits = ['Hits@10', 'Hits@50', 'Hits@100'] for key in keys: results[key] = {k: 0 for k in hits} start_epoch = 1 for epoch in range(start_epoch, args.mask_epochs + 1): t0 = time.time() epoch_loss = train.train_fixed(model, predictor, x, edge_index, split_edge, optimizer, args.batch_size, args) result = train.test(model, predictor, x, edge_index, split_edge, evaluator, args.batch_size, args) k = 'Hits@50' train_result, valid_result, test_result = result[k] if train_result > results['highest_train'][k]: results['highest_train'][k] = train_result if valid_result > results['highest_valid'][k]: results['highest_valid'][k] = valid_result results['final_train'][k] = train_result results['final_test'][k] = test_result results['epoch'] = epoch epoch_time = (time.time() - t0) / 60 print( time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' | ' + 'IMP:[{}] (GET Mask) Epoch:[{}/{}] LOSS:[{:.4f}] Train :[{:.2f}] Valid:[{:.2f}] Test:[{:.2f}] | Update Test:[{:.2f}] at epoch:[{}] Time:[{:.2f}min]' .format(imp_num, epoch, args.mask_epochs, epoch_loss, train_result * 100, valid_result * 100, test_result * 100, results['final_test'][k] * 100, results['epoch'], epoch_time)) print('-' * 100) print( "syd : IMP:[{}] (FIX Mask) Final Result Train:[{:.2f}] Valid:[{:.2f}] Test:[{:.2f}]" .format(imp_num, results['final_train'][k] * 100, results['highest_valid'][k] * 100, results['final_test'][k] * 100)) print('-' * 100)
def main(): EPOCHS = 1 NUMBER_OF_SUBGRAPHS = 10 CKPT_PATH = f'neighbor_deeper_num_{NUMBER_OF_SUBGRAPHS}.pt' EXPERIMENT_RES_PATH = f'neighbor_deeper_num_{NUMBER_OF_SUBGRAPHS}_experiment_res.pk' args = ArgsInit().args if args.use_gpu: device = torch.device("cuda:" + str(args.device)) if torch.cuda.is_available( ) else torch.device("cpu") else: device = torch.device('cpu') dataset = PygNodePropPredDataset(name=args.dataset) graph = dataset[0] print(graph) num_parts = NUMBER_OF_SUBGRAPHS data_list = list( NeighborSubgraphLoader(graph, num_parts=NUMBER_OF_SUBGRAPHS)) print(f'len of datalist: {len(data_list)}') number_of_train = int(0.9 * num_parts) train_data_list = data_list[0:number_of_train] test_data_list = data_list[number_of_train:] print( f'Train test split successful, number of train: {len(train_data_list)} | number of test: {len(test_data_list)}' ) args.in_channels = graph.x.size(-1) args.num_tasks = dataset.num_classes logging.info('%s' % args) model = DeeperGCN(args).to(device) logging.info(model) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) start_time = time.time() epoch_loss_list = [] epoch_acc_list = [] highest_acc = 0 best_model_dict = None for epoch in range(1, EPOCHS + 1): epoch_loss, epoch_acc = train(data_list, model, optimizer, device) epoch_loss_list.append(epoch_loss) epoch_acc_list.append(epoch_acc) print('Epoch {}, training loss {:.4f} | training acc {}'.format( epoch, epoch_loss, epoch_acc)) test_acc = test(model, test_data_list) if test_acc > highest_acc: highest_acc = test_acc best_model_dict = model.state_dict() logging.info( f'best test acc: {highest_acc} | saved to path {CKPT_PATH}') end_time = time.time() total_time = end_time - start_time logging.info('Total time: {}'.format( time.strftime('%H:%M:%S', time.gmtime(total_time)))) experiment_result = {} experiment_result['Total training time'] = total_time experiment_result['Epoch loss list'] = epoch_loss_list experiment_result['Epoch acc list'] = epoch_acc_list experiment_result['Best test acc'] = highest_acc torch.save(best_model_dict, CKPT_PATH) with open(EXPERIMENT_RES_PATH, 'wb') as f: pk.dump(experiment_result, f)
def main_get_mask(args, imp_num, rewind_weight_mask=None, rewind_predict_weight=None, resume_train_ckpt=None): device = torch.device("cuda:" + str(args.device)) dataset = PygLinkPropPredDataset(name=args.dataset) data = dataset[0] # Data(edge_index=[2, 2358104], edge_weight=[2358104, 1], edge_year=[2358104, 1], x=[235868, 128]) split_edge = dataset.get_edge_split() evaluator = Evaluator(args.dataset) x = data.x.to(device) edge_index = data.edge_index.to(device) args.in_channels = data.x.size(-1) args.num_tasks = 1 model = DeeperGCN(args).to(device) pruning.add_mask(model, args) predictor = LinkPredictor(args).to(device) pruning.add_trainable_mask_noise(model, args, c=1e-4) optimizer = torch.optim.Adam(list(model.parameters()) + list(predictor.parameters()), lr=args.lr) results = {'epoch': 0 } keys = ['highest_valid', 'final_train', 'final_test', 'highest_train'] hits = ['Hits@10', 'Hits@50', 'Hits@100'] for key in keys: results[key] = {k: 0 for k in hits} start_epoch = 1 if resume_train_ckpt: start_epoch = resume_train_ckpt['epoch'] rewind_weight_mask = resume_train_ckpt['rewind_weight_mask'] ori_model_dict = model.state_dict() over_lap = {k : v for k, v in resume_train_ckpt['model_state_dict'].items() if k in ori_model_dict.keys()} ori_model_dict.update(over_lap) model.load_state_dict(ori_model_dict) print("Resume at IMP:[{}] epoch:[{}] len:[{}/{}]!".format(imp_num, resume_train_ckpt['epoch'], len(over_lap.keys()), len(ori_model_dict.keys()))) optimizer.load_state_dict(resume_train_ckpt['optimizer_state_dict']) adj_spar, wei_spar = pruning.print_sparsity(model, args) else: rewind_weight_mask = copy.deepcopy(model.state_dict()) rewind_predict_weight = copy.deepcopy(predictor.state_dict()) for epoch in range(start_epoch, args.mask_epochs + 1): t0 = time.time() epoch_loss, prune_info_dict = train.train_mask(model, predictor, x, edge_index, split_edge, optimizer, args) result = train.test(model, predictor, x, edge_index, split_edge, evaluator, args.batch_size, args) k = 'Hits@50' train_result, valid_result, test_result = result[k] if train_result > results['highest_train'][k]: results['highest_train'][k] = train_result if valid_result > results['highest_valid'][k]: results['highest_valid'][k] = valid_result results['final_train'][k] = train_result results['final_test'][k] = test_result results['epoch'] = epoch pruning.save_all(model, predictor, rewind_weight_mask, optimizer, imp_num, epoch, args.model_save_path, 'IMP{}_train_ckpt'.format(imp_num)) epoch_time = (time.time() - t0) / 60 print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' | ' + 'IMP:[{}] (GET Mask) Epoch:[{}/{}] LOSS:[{:.4f}] Train :[{:.2f}] Valid:[{:.2f}] Test:[{:.2f}] | Update Test:[{:.2f}] at epoch:[{}] | Adj[{:.3f}%] Wei[{:.3f}%] Time:[{:.2f}min]' .format(imp_num, epoch, args.mask_epochs, epoch_loss, train_result * 100, valid_result * 100, test_result * 100, results['final_test'][k] * 100, results['epoch'], prune_info_dict['adj_spar'], prune_info_dict['wei_spar'], epoch_time)) rewind_weight_mask, adj_spar, wei_spar = pruning.change(rewind_weight_mask, model, args) print('-' * 100) print("INFO : IMP:[{}] (GET MASK) Final Result Train:[{:.2f}] Valid:[{:.2f}] Test:[{:.2f}] | Adj:[{:.3f}%] Wei:[{:.3f}%]" .format(imp_num, results['final_train'][k] * 100, results['highest_valid'][k] * 100, results['final_test'][k] * 100, adj_spar, wei_spar)) print('-' * 100) return rewind_weight_mask, rewind_predict_weight
def main(): args = ArgsInit().save_exp() if args.use_gpu: device = torch.device("cuda:" + str(args.device)) if torch.cuda.is_available( ) else torch.device("cpu") else: device = torch.device('cpu') dataset = PygNodePropPredDataset(name=args.dataset) data = dataset[0] split_idx = dataset.get_idx_split() evaluator = Evaluator(args.dataset) x = data.x.to(device) y_true = data.y.to(device) train_idx = split_idx['train'].to(device) edge_index = data.edge_index.to(device) edge_index = to_undirected(edge_index, data.num_nodes) if args.self_loop: edge_index = add_self_loops(edge_index, num_nodes=data.num_nodes)[0] sub_dir = 'SL_{}'.format(args.self_loop) args.in_channels = data.x.size(-1) args.num_tasks = dataset.num_classes logging.info('%s' % args) model = DeeperGCN(args).to(device) logging.info(model) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) results = { 'highest_valid': 0, 'final_train': 0, 'final_test': 0, 'highest_train': 0 } start_time = time.time() for epoch in range(1, args.epochs + 1): epoch_loss = train(model, x, edge_index, y_true, train_idx, optimizer) logging.info('Epoch {}, training loss {:.4f}'.format( epoch, epoch_loss)) model.print_params(epoch=epoch) result = test(model, x, edge_index, y_true, split_idx, evaluator) logging.info(result) train_accuracy, valid_accuracy, test_accuracy = result if train_accuracy > results['highest_train']: results['highest_train'] = train_accuracy if valid_accuracy > results['highest_valid']: results['highest_valid'] = valid_accuracy results['final_train'] = train_accuracy results['final_test'] = test_accuracy save_ckpt(model, optimizer, round(epoch_loss, 4), epoch, args.model_save_path, sub_dir, name_post='valid_best') logging.info("%s" % results) end_time = time.time() total_time = end_time - start_time logging.info('Total time: {}'.format( time.strftime('%H:%M:%S', time.gmtime(total_time))))
# We will learn to deform the source mesh by offsetting its vertices # The shape of the deform parameters is equal to the total number of vertices in src_mesh# #deform_verts = torch.full(src_mesh.verts_packed().shape, 0.0, device=device, requires_grad=True) #model = GCN() print(device) #TODO: more features gcn1 = DeeperGCN(3, 128, 3, 12) gcn1.to(device) gcn2 = DeeperGCN(128 + 3, 128, 3, 12) gcn2.to(device) gcn3 = DeeperGCN(128 + 3, 128, 3, 12) gcn3.to(device) # The optimizer optimizer = torch.optim.Adam(list(gcn1.parameters()) + list(gcn2.parameters()) + list(gcn3.parameters()), lr=0.0001) #optimizer = torch.optim.SGD([deform_verts], lr=1.0, momentum=0.9) # Number of optimization steps Niter = 5001 # Weight for the chamfer loss w_chamfer = 1.0 # Weight for mesh edge loss w_edge = 0.1#1.0 # Weight for mesh normal consistency w_normal = 1.6e-4#0.01 # Weight for mesh laplacian smoothing w_laplacian = 0.3#0.1
def main(args): device = torch.device("cuda:" + str(args.device)) dataset = OGBNDataset(dataset_name=args.dataset) nf_path = dataset.extract_node_features(args.aggr) args.num_tasks = dataset.num_tasks args.nf_path = nf_path evaluator = Evaluator(args.dataset) criterion = torch.nn.BCEWithLogitsLoss() valid_data_list = [] for i in range(args.num_evals): parts = dataset.random_partition_graph( dataset.total_no_of_nodes, cluster_number=args.valid_cluster_number) valid_data = dataset.generate_sub_graphs( parts, cluster_number=args.valid_cluster_number) valid_data_list.append(valid_data) model = DeeperGCN(args).to(device) optimizer = optim.Adam(model.parameters(), lr=args.lr) results = { 'highest_valid': 0, 'final_train': 0, 'final_test': 0, 'highest_train': 0, 'epoch': 0 } start_time = time.time() for epoch in range(1, args.epochs + 1): # do random partition every epoch train_parts = dataset.random_partition_graph( dataset.total_no_of_nodes, cluster_number=args.cluster_number) data = dataset.generate_sub_graphs(train_parts, cluster_number=args.cluster_number) epoch_loss = train.train_baseline(data, dataset, model, optimizer, criterion, device, args) result = train.multi_evaluate(valid_data_list, dataset, model, evaluator, device) train_result = result['train']['rocauc'] valid_result = result['valid']['rocauc'] test_result = result['test']['rocauc'] if valid_result > results['highest_valid']: results['highest_valid'] = valid_result results['final_train'] = train_result results['final_test'] = test_result results['epoch'] = epoch save_dir = save_ckpt(model, optimizer, round(epoch_loss, 4), epoch, args.model_save_path, name_post='valid_best') print( time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' | ' + '(Baseline) Epoch:[{}/{}] LOSS:[{:.4f}] Train :[{:.2f}] Valid:[{:.2f}] Test:[{:.2f}] | Update Test:[{:.2f}] at epoch:[{}]' .format(epoch, args.epochs, epoch_loss, train_result * 100, valid_result * 100, test_result * 100, results['final_test'] * 100, results['epoch'])) end_time = time.time() total_time = end_time - start_time # logging.info('Total time: {}'.format(time.strftime('%H:%M:%S', time.gmtime(total_time)))) print("=" * 120) print( "syd final: BASELINE, Train:[{:.2f}] Best Val:[{:.2f}] at epoch:[{}] | Final Test Acc:[{:.2f}] Total time:[{}]" .format(results['final_train'] * 100, results['highest_valid'] * 100, results['epoch'], results['final_test'] * 100, time.strftime('%H:%M:%S', time.gmtime(total_time)))) print("=" * 120)
def main_fixed_mask(args, imp_num, resume_train_ckpt=None): device = torch.device("cuda:" + str(args.device)) dataset = PygLinkPropPredDataset(name=args.dataset) data = dataset[0] # Data(edge_index=[2, 2358104], edge_weight=[2358104, 1], edge_year=[2358104, 1], x=[235868, 128]) split_edge = dataset.get_edge_split() evaluator = Evaluator(args.dataset) x = data.x.to(device) edge_index = data.edge_index.to(device) args.in_channels = data.x.size(-1) args.num_tasks = 1 model = DeeperGCN(args).to(device) pruning.add_mask(model, args) predictor = LinkPredictor(args).to(device) rewind_weight_mask, adj_spar, wei_spar = pruning.resume_change(resume_train_ckpt, model, args) model.load_state_dict(rewind_weight_mask) predictor.load_state_dict(resume_train_ckpt['predictor_state_dict']) # model.load_state_dict(rewind_weight_mask) # predictor.load_state_dict(rewind_predict_weight) adj_spar, wei_spar = pruning.print_sparsity(model, args) for name, param in model.named_parameters(): if 'mask' in name: param.requires_grad = False optimizer = torch.optim.Adam(list(model.parameters()) + list(predictor.parameters()), lr=args.lr) #results = {} results = {'epoch': 0 } keys = ['highest_valid', 'final_train', 'final_test', 'highest_train'] hits = ['Hits@10', 'Hits@50', 'Hits@100'] for key in keys: results[key] = {k: 0 for k in hits} results['adj_spar'] = adj_spar results['wei_spar'] = wei_spar start_epoch = 1 for epoch in range(start_epoch, args.fix_epochs + 1): t0 = time.time() epoch_loss = train.train_fixed(model, predictor, x, edge_index, split_edge, optimizer, args.batch_size, args) result = train.test(model, predictor, x, edge_index, split_edge, evaluator, args.batch_size, args) # return a tuple k = 'Hits@50' train_result, valid_result, test_result = result[k] if train_result > results['highest_train'][k]: results['highest_train'][k] = train_result if valid_result > results['highest_valid'][k]: results['highest_valid'][k] = valid_result results['final_train'][k] = train_result results['final_test'][k] = test_result results['epoch'] = epoch pruning.save_all(model, predictor, rewind_weight_mask, optimizer, imp_num, epoch, args.model_save_path, 'IMP{}_fixed_ckpt'.format(imp_num)) epoch_time = (time.time() - t0) / 60 print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' | ' + 'IMP:[{}] (FIX Mask) Epoch:[{}/{}] LOSS:[{:.4f}] Train :[{:.2f}] Valid:[{:.2f}] Test:[{:.2f}] | Update Test:[{:.2f}] at epoch:[{}] Time:[{:.2f}min]' .format(imp_num, epoch, args.fix_epochs, epoch_loss, train_result * 100, valid_result * 100, test_result * 100, results['final_test'][k] * 100, results['epoch'], epoch_time)) print("=" * 120) print("syd final: IMP:[{}], Train:[{:.2f}] Best Val:[{:.2f}] at epoch:[{}] | Final Test Acc:[{:.2f}] Adj:[{:.2f}%] Wei:[{:.2f}%]" .format(imp_num, results['final_train'][k] * 100, results['highest_valid'][k] * 100, results['epoch'], results['final_test'][k] * 100, results['adj_spar'], results['wei_spar'])) print("=" * 120)
def main_get_mask(args, imp_num, rewind_weight_mask=None, resume_train_ckpt=None): device = torch.device("cuda:" + str(args.device)) dataset = PygNodePropPredDataset(name=args.dataset) data = dataset[0] split_idx = dataset.get_idx_split() evaluator = Evaluator(args.dataset) x = data.x.to(device) y_true = data.y.to(device) train_idx = split_idx['train'].to(device) edge_index = data.edge_index.to(device) edge_index = to_undirected(edge_index, data.num_nodes) if args.self_loop: edge_index = add_self_loops(edge_index, num_nodes=data.num_nodes)[0] args.in_channels = data.x.size(-1) args.num_tasks = dataset.num_classes print("-" * 120) model = DeeperGCN(args).to(device) pruning.add_mask(model, args.num_layers) if rewind_weight_mask: model.load_state_dict(rewind_weight_mask) adj_spar, wei_spar = pruning.print_sparsity(model, args) pruning.add_trainable_mask_noise(model, args, c=1e-5) optimizer = torch.optim.Adam(model.parameters(), lr=1e-3) results = { 'highest_valid': 0, 'final_train': 0, 'final_test': 0, 'highest_train': 0, 'epoch': 0 } start_epoch = 1 if resume_train_ckpt: start_epoch = resume_train_ckpt['epoch'] rewind_weight_mask = resume_train_ckpt['rewind_weight_mask'] ori_model_dict = model.state_dict() over_lap = { k: v for k, v in resume_train_ckpt['model_state_dict'].items() if k in ori_model_dict.keys() } ori_model_dict.update(over_lap) model.load_state_dict(ori_model_dict) print("Resume at IMP:[{}] epoch:[{}] len:[{}/{}]!".format( imp_num, resume_train_ckpt['epoch'], len(over_lap.keys()), len(ori_model_dict.keys()))) optimizer.load_state_dict(resume_train_ckpt['optimizer_state_dict']) adj_spar, wei_spar = pruning.print_sparsity(model, args) else: rewind_weight_mask = copy.deepcopy(model.state_dict()) for epoch in range(start_epoch, args.mask_epochs + 1): epoch_loss = train(model, x, edge_index, y_true, train_idx, optimizer, args) result = test(model, x, edge_index, y_true, split_idx, evaluator) train_accuracy, valid_accuracy, test_accuracy = result if valid_accuracy > results['highest_valid']: results['highest_valid'] = valid_accuracy results['final_train'] = train_accuracy results['final_test'] = test_accuracy results['epoch'] = epoch rewind_weight_mask, adj_spar, wei_spar = pruning.get_final_mask_epoch( model, rewind_weight_mask, args) #pruning.save_all(model, rewind_weight_mask, optimizer, imp_num, epoch, args.model_save_path, 'IMP{}_train_ckpt'.format(imp_num)) print( time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' | ' + 'IMP:[{}] (GET Mask) Epoch:[{}/{}]\t LOSS:[{:.4f}] Train :[{:.2f}] Valid:[{:.2f}] Test:[{:.2f}] | Update Test:[{:.2f}] at epoch:[{}] | Adj:[{:.2f}%] Wei:[{:.2f}%]' .format(imp_num, epoch, args.mask_epochs, epoch_loss, train_accuracy * 100, valid_accuracy * 100, test_accuracy * 100, results['final_test'] * 100, results['epoch'], adj_spar, wei_spar)) print('-' * 100) print( "INFO : IMP:[{}] (GET MASK) Final Result Train:[{:.2f}] Valid:[{:.2f}] Test:[{:.2f}] | Adj:[{:.2f}%] Wei:[{:.2f}%] " .format(imp_num, results['final_train'] * 100, results['highest_valid'] * 100, results['final_test'] * 100, adj_spar, wei_spar)) print('-' * 100) return rewind_weight_mask