Esempio n. 1
0
        model = DnCNN(num_layers=17)
    elif opt.arch == 'DnCNN-B':
        model = DnCNN(num_layers=20)
    elif opt.arch == 'DnCNN-3':
        model = DnCNN(num_layers=20)

    state_dict = model.state_dict()
    for n, p in torch.load(opt.weights_path,
                           map_location=lambda storage, loc: storage).items():
        if n in state_dict.keys():
            state_dict[n].copy_(p)
        else:
            raise KeyError(n)

    model = model.to(device)
    model.eval()

    filename = os.path.basename(opt.image_path).split('.')[0]
    descriptions = ''

    input = pil_image.open(opt.image_path).convert('RGB')

    if opt.gaussian_noise_level is not None:
        noise = np.random.normal(0.0, opt.gaussian_noise_level,
                                 (input.height, input.width, 3)).astype(
                                     np.float32)
        input = np.array(input).astype(np.float32) + noise
        descriptions += '_noise_l{}'.format(opt.gaussian_noise_level)
        pil_image.fromarray(input.clip(0.0, 255.0).astype(np.uint8)).save(
            os.path.join(opt.outputs_dir,
                         '{}{}.png'.format(filename, descriptions)))
            batch_y = batch_y.unsqueeze(1)
            batch_x = batch_x.unsqueeze(1)

            # y_ = torch.cat([batch_y, High_noise[:,0].unsqueeze(1).cuda()], dim=1)
            # x_ = torch.cat([batch_x, High_origin[:,0].unsqueeze(1).cuda()], dim=1)
            y_ = High_noise[:, 0].unsqueeze(1).cuda()
            x_ = High_origin[:, 0].unsqueeze(1).cuda()

            decompose_output = decompose_model(y_.cuda())
            decompose_loss = criterion(decompose_output, x_)
            # loss = criterion(decompose_output[:,1], x_[:,1])
            optimizer_decompose.zero_grad()
            decompose_loss.backward()
            optimizer_decompose.step()
            decompose_model.eval()

            # output1 = torch.FloatTensor(decompose_output.cpu())
            # compose_output = compose_model(output1.cuda())
            # compose_loss = criterion(compose_output, batch_x)
            # optimizer_compose.zero_grad()
            # compose_loss.backward()
            # optimizer_compose.step()
            # compose_model.eval()

            fig = plt.figure()
            gs = GridSpec(nrows=2, ncols=3)

            highfreq1 = fig.add_subplot(gs[0, 0])
            highfreq2 = fig.add_subplot(gs[0, 1])
            highfreq3 = fig.add_subplot(gs[0, 2])
Esempio n. 3
0
            torch.load(os.path.join(args.model_dir, args.model_name)))
        model_lowfreq.load_state_dict(
            torch.load(os.path.join(args.low_model_dir, args.low_model_name)))
        # model = torch.load(os.path.join(args.model_dir, args.model_name))
        log('load trained model')

#    params = model.state_dict()
#    print(params.values())
#    print(params.keys())
#
#    for key, value in params.items():
#        print(key)    # parameter name
#    print(params['dncnn.12.running_mean'])
#    print(model.state_dict())

    model_dncnn.eval()  # evaluation mode
    model_lowfreq.eval()
    #    model.train()

    if not os.path.exists(args.result_dir):
        os.mkdir(args.result_dir)

    for set_cur in args.set_names:

        if not os.path.exists(os.path.join(args.result_dir, set_cur)):
            os.mkdir(os.path.join(args.result_dir, set_cur))
        psnrs = []
        ssims = []

        for im in os.listdir(os.path.join(args.set_dir, set_cur)):
            if im.endswith(".jpg") or im.endswith(".bmp") or im.endswith(
    os.mkdir(save_dir)

if __name__ == '__main__':
    # model selection
    print('===> Building model')
    model = DnCNN()
    low_model = DnCNN()
    low_model.load_state_dict(torch.load(os.path.join(args.low_model_dir, args.low_model_name)))

    initial_epoch = findLastCheckpoint(save_dir=save_dir)  # load the last model in matconvnet style
    if initial_epoch > 0:
        print('resuming by loading epoch %03d' % initial_epoch)
        # model.load_state_dict(torch.load(os.path.join(save_dir, 'model_%03d.pth' % initial_epoch)))
        # model = torch.load(os.path.join(save_dir, 'model_%03d.pth' % initial_epoch))
    model.train()
    low_model.eval()
    # criterion = nn.MSELoss(reduction = 'sum')  # PyTorch 0.4.1
    # criterion = sum_squared_error()
    criterion = nn.MSELoss()
    Edge_enhance = torch.FloatTensor(args.batch_size, 1, 40, 40)
    if cuda:
        model = model.cuda()
        low_model = low_model.cuda()
        # device_ids = [0]
        # model = nn.DataParallel(model, device_ids=device_ids).cuda()
        criterion = criterion.cuda()

    optimizer = optim.Adam(model.parameters(), lr=args.lr)
    scheduler = MultiStepLR(optimizer, milestones=[30, 60, 90], gamma=0.2)  # learning rates
    for epoch in range(initial_epoch, n_epoch):
    else:
        decompose_model.load_state_dict(
            torch.load(os.path.join(args.model_dir, args.model_name)))
        # model = torch.load(os.path.join(args.model_dir, args.model_name))
        log('load trained model')

#    params = model.state_dict()
#    print(params.values())
#    print(params.keys())
#
#    for key, value in params.items():
#        print(key)    # parameter name
#    print(params['dncnn.12.running_mean'])
#    print(model.state_dict())

    decompose_model.eval()  # evaluation mode
    #    model.train()

    if torch.cuda.is_available():
        decompose_model = decompose_model.cuda()

    if not os.path.exists(args.result_dir):
        os.mkdir(args.result_dir)

    for set_cur in args.set_names:

        if not os.path.exists(os.path.join(args.result_dir, set_cur)):
            os.mkdir(os.path.join(args.result_dir, set_cur))
        psnrs = []
        ssims = []
Esempio n. 6
0
def main():
    start = time.time()

    parser = argparse. ArgumentParser(description='Gamma-Spectra Denoising Trainer')
    parser.add_argument('--dettype', type=str, default='HPGe', help='detector type to train {HPGe, NaI, CZT}')
    parser.add_argument('--test_set', type=str, default='data/training.h5', help='h5 file with training vectors')
    parser.add_argument('--all', default=False, help='denoise all examples in test_set file', action='store_true')
    parser.add_argument('--batch_size', type=int, default=64, help='batch size for denoising')
    parser.add_argument('--seed', type=int, help='random seed')
    parser.add_argument('--model', type=str, default='models/best_model.pt', help='location of model to use')
    parser.add_argument('--outdir', type=str, help='location to save output plots')
    parser.add_argument('--outfile', type=str, help='location to save output data', default='denoised.h5')
    parser.add_argument('--savefigs', help='saves plots of results', default=False, action='store_true')
    args = parser.parse_args()

    # if output directory is not provided, save plots to model directory
    if not args.outdir:
        args.outdir = os.path.dirname(args.model)
    else:
        # make sure output dirs exists
        os.makedirs(args.outdir, exist_ok=True)
       
    # make sure data files exist
    assert os.path.exists(args.test_set), f'Cannot find testset vectors file {args.test_set}'


    # detect gpus and setup environment variables
    device_ids = setup_gpus()
    print(f'Cuda devices found: {[torch.cuda.get_device_name(i) for i in device_ids]}')

    print('Loading datasets')
    test_data = load_data(args.test_set, args.dettype.upper())
    noisy_spectra = test_data['noisy_spectrum']
    clean_spectra = test_data['spectrum']
    spectra_keV = test_data['keV']

    noisy_spectra = np.expand_dims(noisy_spectra, axis=1)
    clean_spectra = np.expand_dims(clean_spectra, axis=1)

    assert noisy_spectra.shape == clean_spectra.shape, 'Mismatch between shapes of training and target data'

    # load parameters for model
    params = pickle.load(open(args.model.replace('.pt','.npy'),'rb'))['model']

    train_mean = params['train_mean'] 
    train_std = params['train_std'] 

    if not args.seed:
        args.seed = params['train_seed']

    # applying random seed for reproducability
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    # create dataset for denoising, if not 'all' use training seed to recreate validation set
    if not args.all:
        _, x_val, _, y_val = train_test_split(noisy_spectra, clean_spectra, test_size = 0.1, random_state=args.seed)
        val_dataset = TensorDataset(torch.Tensor(x_val), torch.Tensor(y_val))
    else:
        val_dataset = TensorDataset(torch.Tensor(noisy_spectra), torch.Tensor(clean_spectra))

    print(f'Number of examples to denoise: {len(val_dataset)}')

    # create batched data loaders for model
    val_loader = DataLoader(dataset=val_dataset, num_workers=os.cpu_count(), batch_size=args.batch_size, shuffle=False)
    print(f'Number of batches {len(val_loader)}')

    # create and load model
    if params['model_name'] == 'DnCNN':
        model = DnCNN(num_channels=params['num_channels'], num_layers=params['num_layers'], \
                      kernel_size=params['kernel_size'], stride=params['stride'], num_filters=params['num_filters']) 
    elif params['model_name'] == 'DnCNN-res':
        model = DnCNN_Res(num_channels=params['num_channels'], num_layers=params['num_layers'], \
                      kernel_size=params['kernel_size'], stride=params['stride'], num_filters=params['num_filters']) 
    else:
        print(f'Model name {params["model_name"]} is not supported.')
        return 1

    # prepare model for data parallelism (use multiple GPUs)
    model = torch.nn.DataParallel(model, device_ids=device_ids).cuda()

    # loaded saved model
    print(f'Loading weights for {params["model_name"]} model from {args.model} for {params["model_type"]}')
    model.load_state_dict(torch.load(args.model))

    # Main training loop

    print(f'Denoising spectra')
    model.eval() 
    total_psnr_noisy = 0
    total_psnr_denoised = 0

    denoised = []
    with torch.no_grad():
        for num, (noisy_spectra, clean_spectra) in enumerate(val_loader, start=1):

            # move batch to GPU
            noisy_spectra = Variable(noisy_spectra.cuda())
            clean_spectra = Variable(clean_spectra.cuda())

            # make predictions
            preds = model((noisy_spectra-train_mean)/train_std)

            # calculate PSNR 
            clean_spectra = clean_spectra.cpu().numpy().astype(np.float32)
            noisy_spectra = noisy_spectra.cpu().numpy().astype(np.float32)
            preds = preds.cpu().numpy().astype(np.float32)
            psnr_noisy = psnr_of_batch(clean_spectra, noisy_spectra)

            # save denoised spectrum
            if params['model_type'] == 'Gen-spectrum':
                denoised_spectrum = preds
            else:
                denoised_spectrum = noisy_spectra-preds 

            # add batch of denoised spectra to list of denoised spectra
            denoised.extend(denoised_spectrum.tolist()) 

            psnr_denoised = psnr_of_batch(clean_spectra, denoised_spectrum)
            total_psnr_noisy += psnr_noisy
            total_psnr_denoised += psnr_denoised
            print(f'[{num}/{len(val_loader)}] PSNR {psnr_noisy} --> {psnr_denoised}, increase of {psnr_denoised-psnr_noisy}')
            if args.savefigs:
                compare_results(spectra_keV, clean_spectra[0,0,:], noisy_spectra[0,0,:], preds[0,0,:], args.outdir, str(num))

    # save denoised data to file, currently only supports entire dataset
    if args.all:
        assert len(test_data['noisy_spectrum']) == len(denoised), f'{len(test_data["noisy_spectrum"])} examples yet {len(denoised)} denoised' 
        denoised = np.squeeze(np.array(denoised))
        test_data['noisy_spectrum'] = denoised 
        outfile = os.path.join(args.outdir, args.outfile)
        print(f'Saving denoised spectrum to {outfile}')
        save_dataset(args.dettype.upper(), test_data, outfile)

    avg_psnr_noisy = total_psnr_noisy/len(val_loader)
    avg_psnr_denoised = total_psnr_denoised/len(val_loader)

    print(f'Average PSNR: {avg_psnr_denoised}, average increase of {avg_psnr_denoised-avg_psnr_noisy}')

    print(f'Script completed in {time.time()-start:.2f} secs')
    return 0
Esempio n. 7
0
def train_model(config):
    # Define hyper-parameters.
    depth = int(config["DnCNN"]["depth"])
    n_channels = int(config["DnCNN"]["n_channels"])
    img_channel = int(config["DnCNN"]["img_channel"])
    kernel_size = int(config["DnCNN"]["kernel_size"])
    use_bnorm = config.getboolean("DnCNN", "use_bnorm")
    epochs = int(config["DnCNN"]["epoch"])
    batch_size = int(config["DnCNN"]["batch_size"])
    train_data_dir = config["DnCNN"]["train_data_dir"]
    test_data_dir = config["DnCNN"]["test_data_dir"]
    eta_min = float(config["DnCNN"]["eta_min"])
    eta_max = float(config["DnCNN"]["eta_max"])
    dose = float(config["DnCNN"]["dose"])
    model_save_dir = config["DnCNN"]["model_save_dir"]

    # Save logs to txt file.
    log_dir = config["DnCNN"]["log_dir"]
    log_dir = Path(log_dir) / "dose{}".format(str(int(dose * 100)))
    log_file = log_dir / "train_result.txt"

    # Define device.
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    # Initiate a DnCNN instance.
    # Load the model to device and set the model to training.
    model = DnCNN(depth=depth, n_channels=n_channels,
                  img_channel=img_channel,
                  use_bnorm=use_bnorm,
                  kernel_size=kernel_size)

    model = model.to(device)
    model.train()

    # Define loss criterion and optimizer
    optimizer = optim.Adam(model.parameters(), lr=1e-3)
    scheduler = MultiStepLR(optimizer, milestones=[30, 60, 90], gamma=0.2)
    criterion = LossFunc(reduction="mean")

    # Get a validation test set and corrupt with noise for validation performance.
    # For every epoch, use this pre-determined noisy images.
    test_file_list = glob.glob(test_data_dir + "/*.png")
    xs_test = []
    # Can't directly convert the xs_test from list to ndarray because some images are 512*512
    # while the rest are 256*256.
    for i in range(len(test_file_list)):
        img = cv2.imread(test_file_list[i], 0)
        img = np.array(img, dtype="float32") / 255.0
        img = np.expand_dims(img, axis=0)
        img_noisy, _ = nm(img, eta_min, eta_max, dose, t=100)
        xs_test.append((img_noisy, img))

    # Train the model.
    loss_store = []
    epoch_loss_store = []
    psnr_store = []
    ssim_store = []

    psnr_tr_store = []
    ssim_tr_store = []
    
    loss_mse = torch.nn.MSELoss()

    dtype = torch.cuda.FloatTensor
    # load vgg network
    vgg = Vgg16().type(dtype)
    
    
    for epoch in range(epochs):
        # For each epoch, generate clean augmented patches from the training directory.
        # Convert the data from uint8 to float32 then scale them to make it in [0, 1].
        # Then make the patches to be of shape [N, C, H, W],
        # where N is the batch size, C is the number of color channels.
        # H and W are height and width of image patches.
        xs = dg.datagenerator(data_dir=train_data_dir)
        xs = xs.astype("float32") / 255.0
        xs = torch.from_numpy(xs.transpose((0, 3, 1, 2)))

        train_set = dg.DenoisingDatatset(xs, eta_min, eta_max, dose)
        train_loader = DataLoader(dataset=train_set, num_workers=4,
                                  drop_last=True, batch_size=batch_size,
                                  shuffle=True)  # TODO: if drop_last=True, the dropping in the
                                                 # TODO: data_generator is not necessary?

        # train_loader_test = next(iter(train_loader))

        t_start = timer()
        epoch_loss = 0
        for idx, data in enumerate(train_loader):
            inputs, labels = data
            inputs, labels = inputs.to(device), labels.to(device)
            img_batch_read = len(inputs)

            optimizer.zero_grad()

            outputs = model(inputs)
            
            # We can use labels for both style and content image
            
                # style image
#             style_transform = transforms.Compose([
#             normalize_tensor_transform()      # normalize with ImageNet values
#             ])
            
#             labels_t = style_transform(labels)
                        
            labels_t = labels.repeat(1, 3, 1, 1)
            outputs_t = outputs.repeat(1, 3, 1, 1)            
            
            y_c_features = vgg(labels_t)
            style_gram = [gram(fmap) for fmap in y_c_features]
            
            y_hat_features = vgg(outputs_t)
            y_hat_gram = [gram(fmap) for fmap in y_hat_features]            
            
            # calculate style loss
            style_loss = 0.0
            for j in range(4):
                style_loss += loss_mse(y_hat_gram[j], style_gram[j][:img_batch_read])
            style_loss = STYLE_WEIGHT*style_loss
            aggregate_style_loss = style_loss

            # calculate content loss (h_relu_2_2)
            recon = y_c_features[1]      
            recon_hat = y_hat_features[1]
            content_loss = CONTENT_WEIGHT*loss_mse(recon_hat, recon)
            aggregate_content_loss = content_loss
            
            loss = aggregate_content_loss + aggregate_style_loss
#             loss = criterion(outputs, labels)
            
            loss_store.append(loss.item())
            epoch_loss += loss.item()

            loss.backward()

            optimizer.step()

            if idx % 100 == 0:
                print("Epoch [{} / {}], step [{} / {}], loss = {:.5f}, lr = {:.6f}, elapsed time = {:.2f}s".format(
                    epoch + 1, epochs, idx, len(train_loader), loss.item(), *scheduler.get_last_lr(), timer()-t_start))

        epoch_loss_store.append(epoch_loss / len(train_loader))

        # At each epoch validate the result.
        model = model.eval()

        # # Firstly validate on training sets. This takes a long time so I commented.
        # tr_psnr = []
        # tr_ssim = []
        # # t_start = timer()
        # with torch.no_grad():
        #     for idx, train_data in enumerate(train_loader):
        #         inputs, labels = train_data
        #         # print(inputs.shape)
        #         # inputs = np.expand_dims(inputs, axis=0)
        #         # inputs = torch.from_numpy(inputs).to(device)
        #         inputs = inputs.to(device)
        #         labels = labels.squeeze().numpy()
        #
        #         outputs = model(inputs)
        #         outputs = outputs.squeeze().cpu().detach().numpy()
        #
        #         tr_psnr.append(peak_signal_noise_ratio(labels, outputs))
        #         tr_ssim.append(structural_similarity(outputs, labels))
        # psnr_tr_store.append(sum(tr_psnr) / len(tr_psnr))
        # ssim_tr_store.append(sum(tr_ssim) / len(tr_ssim))
        # # print("Elapsed time = {}".format(timer() - t_start))
        #
        # print("Validation on train set: epoch [{} / {}], aver PSNR = {:.2f}, aver SSIM = {:.4f}".format(
        #     epoch + 1, epochs, psnr_tr_store[-1], ssim_tr_store[-1]))

        # Validate on test set
        val_psnr = []
        val_ssim = []
        with torch.no_grad():
            for idx, test_data in enumerate(xs_test):
                inputs, labels = test_data
                inputs = np.expand_dims(inputs, axis=0)
                inputs = torch.from_numpy(inputs).to(device)
                labels = labels.squeeze()

                outputs = model(inputs)
                outputs = outputs.squeeze().cpu().detach().numpy()

                val_psnr.append(peak_signal_noise_ratio(labels, outputs))
                val_ssim.append(structural_similarity(outputs, labels))

        psnr_store.append(sum(val_psnr) / len(val_psnr))
        ssim_store.append(sum(val_ssim) / len(val_ssim))

        print("Validation on test set: epoch [{} / {}], aver PSNR = {:.2f}, aver SSIM = {:.4f}".format(
            epoch + 1, epochs, psnr_store[-1], ssim_store[-1]))

        # Set model to train mode again.
        model = model.train()

        scheduler.step()

        # Save model
        save_model(model, model_save_dir, epoch, dose * 100)

        # Save the loss and validation PSNR, SSIM.

        if not log_dir.exists():
            Path.mkdir(log_dir)
        with open(log_file, "a+") as fh:
            # fh.write("{} Epoch [{} / {}], loss = {:.6f}, train PSNR = {:.2f}dB, train SSIM = {:.4f}, "
            #          "validation PSNR = {:.2f}dB, validation SSIM = {:.4f}".format(
            #          datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S:"),
            #          epoch + 1, epochs, epoch_loss_store[-1],
            #          psnr_tr_store[-1], ssim_tr_store[-1],
            #          psnr_store[-1], ssim_store[-1]))
            fh.write("{} Epoch [{} / {}], loss = {:.6f}, "
                     "validation PSNR = {:.2f}dB, validation SSIM = {:.4f}\n".format(
                     datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S:"),
                     epoch + 1, epochs, epoch_loss_store[-1],
                     psnr_store[-1], ssim_store[-1]))

        # np.savetxt(log_file, np.hstack((epoch + 1, epoch_loss_store[-1], psnr_store[-1], ssim_store[-1])), fmt="%.6f", delimiter=",  ")

        fig, ax = plt.subplots()
        ax.plot(loss_store[-len(train_loader):])
        ax.set_title("Last 1862 losses")
        ax.set_xlabel("iteration")
        fig.show()
    unet_model.load_state_dict(
        torch.load(os.path.join(args.three_model_dir, args.three_model_name)))

    # model = torch.load(os.path.join(args.model_dir, args.model_name))
    log('load trained model')

    #    params = model.state_dict()
    #    print(params.values())
    #    print(params.keys())
    #
    #    for key, value in params.items():
    #        print(key)    # parameter name
    #    print(params['dncnn.12.running_mean'])
    #    print(model.state_dict())

    pre_model.eval()  # evaluation mode
    # unet_model.eval()
    #    model.train()
    pre_model.dncnn.register_forward_hook(get_activation('noise_level'))
    if not os.path.exists(args.result_dir):
        os.mkdir(args.result_dir)

    for set_cur in args.set_names:

        if not os.path.exists(os.path.join(args.result_dir, set_cur)):
            os.mkdir(os.path.join(args.result_dir, set_cur))
        psnrs = []
        ssims = []

        for im in os.listdir(os.path.join(args.set_dir, set_cur)):
            if im.endswith(".jpg") or im.endswith(".bmp") or im.endswith(
Esempio n. 9
0
                                    args.high_model_name)))
        low_model.load_state_dict(
            torch.load(os.path.join(args.low_model_dir, args.low_model_name)))
        # model = torch.load(os.path.join(args.model_dir, args.model_name))
        log('load trained model')

#    params = model.state_dict()
#    print(params.values())
#    print(params.keys())
#
#    for key, value in params.items():
#        print(key)    # parameter name
#    print(params['dncnn.12.running_mean'])
#    print(model.state_dict())

    high_model.eval()  # evaluation mode
    low_model.eval()
    #    model.train()

    if torch.cuda.is_available():
        high_model = high_model.cuda()
        low_model = low_model.cuda()

    if not os.path.exists(args.result_dir):
        os.mkdir(args.result_dir)

    for set_cur in args.set_names:

        if not os.path.exists(os.path.join(args.result_dir, set_cur)):
            os.mkdir(os.path.join(args.result_dir, set_cur))
        psnrs = []
        res_model.load_state_dict(
            torch.load(os.path.join(args.res_model_dir, args.res_model_name)))
        # model.load_state_dict(torch.load(os.path.join(args.model_dir, args.model_name)))
        model = torch.load(os.path.join(args.model_dir, args.model_name))
        log('load trained model')

#    params = model.state_dict()
#    print(params.values())
#    print(params.keys())
#
#    for key, value in params.items():
#        print(key)    # parameter name
#    print(params['dncnn.12.running_mean'])
#    print(model.state_dict())

    low_model.eval()  # evaluation mode
    res_model.eval()
    model.eval()

    if torch.cuda.is_available():
        low_model = low_model.cuda()
        res_model = res_model.cuda()
        model = model.cuda()
        # evaluation mode

    if not os.path.exists(args.result_dir):
        os.mkdir(args.result_dir)

    for set_cur in args.set_names:

        if not os.path.exists(os.path.join(args.result_dir, set_cur)):
Esempio n. 11
0
        two_model.load_state_dict(torch.load(os.path.join(args.two_model_dir, args.two_model_name)))
        three_model.load_state_dict(torch.load(os.path.join(args.three_model_dir, args.three_model_name)))

        # model = torch.load(os.path.join(args.model_dir, args.model_name))
        log('load trained model')

#    params = model.state_dict()
#    print(params.values())
#    print(params.keys())
#
#    for key, value in params.items():
#        print(key)    # parameter name
#    print(params['dncnn.12.running_mean'])
#    print(model.state_dict())

    two_model.eval()  # evaluation mode
    three_model.eval()
#    model.train()

    if not os.path.exists(args.result_dir):
        os.mkdir(args.result_dir)

    for set_cur in args.set_names:

        if not os.path.exists(os.path.join(args.result_dir, set_cur)):
            os.mkdir(os.path.join(args.result_dir, set_cur))
        psnrs = []
        ssims = []

        for im in os.listdir(os.path.join(args.set_dir, set_cur)):
            if im.endswith(".jpg") or im.endswith(".bmp") or im.endswith(".png"):