def main(): args = argparser() args.clip_rewards = False env = make_atari(args.env) env = wrap_atari_dqn(env, args) seed = args.seed + 1122 utils.set_global_seeds(seed, use_torch=True) env.seed(seed) model = DuelingDQN(env) model.load_state_dict(torch.load('model.pth', map_location='cpu')) episode_reward, episode_length = 0, 0 state = env.reset() while True: if args.render: env.render() action, _ = model.act(torch.FloatTensor(np.array(state)), 0.) next_state, reward, done, _ = env.step(action) state = next_state episode_reward += reward episode_length += 1 if done: state = env.reset() print("Episode Length / Reward: {} / {}".format( episode_length, episode_reward)) episode_reward = 0 episode_length = 0
def exploration(args, actor_id, param_queue): writer = SummaryWriter(comment="-{}-eval".format(args.env)) args.clip_rewards = False args.episode_life = False env = make_atari(args.env) env = wrap_atari_dqn(env, args) seed = args.seed + actor_id utils.set_global_seeds(seed, use_torch=True) env.seed(seed) model = DuelingDQN(env, args) param = param_queue.get(block=True) model.load_state_dict(param) param = None print("Received First Parameter!") episode_reward, episode_length, episode_idx = 0, 0, 0 state = env.reset() tb_dict = {k: [] for k in ['episode_reward', 'episode_length']} while True: action, _ = model.act(torch.FloatTensor(np.array(state)), 0.) next_state, reward, done, _ = env.step(action) state = next_state episode_reward += reward episode_length += 1 if done or episode_length == args.max_episode_length: state = env.reset() tb_dict["episode_reward"].append(episode_reward) tb_dict["episode_length"].append(episode_length) episode_reward = 0 episode_length = 0 episode_idx += 1 param = param_queue.get() model.load_state_dict(param) print(f"{datetime.now()} Updated Parameter..") if (episode_idx * args.num_envs_per_worker) % args.tb_interval == 0: writer.add_scalar('evaluator/episode_reward_mean', np.mean(tb_dict['episode_reward']), episode_idx) writer.add_scalar('evaluator/episode_reward_max', np.max(tb_dict['episode_reward']), episode_idx) writer.add_scalar('evaluator/episode_reward_min', np.min(tb_dict['episode_reward']), episode_idx) writer.add_scalar('evaluator/episode_reward_std', np.std(tb_dict['episode_reward']), episode_idx) writer.add_scalar('evaluator/episode_length_mean', np.mean(tb_dict['episode_length']), episode_idx) tb_dict['episode_reward'].clear() tb_dict['episode_length'].clear()
def exploration(args, actor_id, n_actors, param_queue, send_queue, req_param_queue): writer = SummaryWriter(comment="-{}-actor{}".format(args.env, actor_id)) env = make_atari(args.env) env = wrap_atari_dqn(env, args) seed = args.seed + actor_id utils.set_global_seeds(seed, use_torch=True) env.seed(seed) model = DuelingDQN(env) epsilon = args.eps_base**(1 + actor_id / (n_actors - 1) * args.eps_alpha) storage = BatchStorage(args.n_steps, args.gamma) req_param_queue.put(True) param = param_queue.get(block=True) model.load_state_dict(param) param = None print("Received First Parameter!") episode_reward, episode_length, episode_idx, actor_idx = 0, 0, 0, 0 state = env.reset() while True: action, q_values = model.act(torch.FloatTensor(np.array(state)), epsilon) next_state, reward, done, _ = env.step(action) com_state = zlib.compress(np.array(state).tobytes()) storage.add(com_state, reward, action, done, q_values) state = next_state episode_reward += reward episode_length += 1 actor_idx += 1 if done or episode_length == args.max_episode_length: state = env.reset() writer.add_scalar("actor/episode_reward", episode_reward, episode_idx) writer.add_scalar("actor/episode_length", episode_length, episode_idx) episode_reward = 0 episode_length = 0 episode_idx += 1 if actor_idx % args.update_interval == 0: try: req_param_queue.put(True) param = param_queue.get(block=True) model.load_state_dict(param) print("Updated Parameter..") except queue.Empty: pass if len(storage) == args.send_interval: batch, prios = storage.make_batch() send_queue.put((batch, prios)) batch, prios = None, None storage.reset()
def main(): learner_ip = get_environ() args = argparser() writer = SummaryWriter(comment="-{}-eval".format(args.env)) ctx = zmq.Context() param_socket = ctx.socket(zmq.SUB) param_socket.setsockopt(zmq.SUBSCRIBE, b'') param_socket.setsockopt(zmq.CONFLATE, 1) param_socket.connect('tcp://{}:52001'.format(learner_ip)) env = make_atari(args.env) env = wrap_atari_dqn(env, args) seed = args.seed + 1122 utils.set_global_seeds(seed, use_torch=True) env.seed(seed) model = DuelingDQN(env) data = param_socket.recv(copy=False) param = pickle.loads(data) model.load_state_dict(param) print("Loaded first parameter from learner") episode_reward, episode_length, episode_idx = 0, 0, 0 state = env.reset() while True: if args.render: env.render() action, _ = model.act(torch.FloatTensor(np.array(state)), 0.01) next_state, reward, done, _ = env.step(action) state = next_state episode_reward += reward episode_length += 1 if done: state = env.reset() writer.add_scalar("eval/episode_reward", episode_reward, episode_idx) writer.add_scalar("eval/episode_length", episode_length, episode_idx) episode_reward = 0 episode_length = 0 episode_idx += 1 if episode_idx % args.eval_update_interval == 0: data = param_socket.recv(copy=False) param = pickle.loads(data) model.load_state_dict(param)
def exploration_eval(args, actor_id, param_queue): writer = SummaryWriter(comment="-{}-eval".format(args.env)) args.clip_rewards = False env = make_atari(args.env) env = wrap_atari_dqn(env, args) seed = args.seed + actor_id utils.set_global_seeds(seed, use_torch=True) env.seed(seed) model = DuelingDQN(env) param = param_queue.get(block=True) model.load_state_dict(param) param = None print("Received First Parameter!") episode_reward, episode_length, episode_idx = 0, 0, 0 state = env.reset() while True: action, _ = model.act(torch.FloatTensor(np.array(state)), 0.) next_state, reward, done, _ = env.step(action) state = next_state episode_reward += reward episode_length += 1 if done or episode_length == args.max_episode_length: state = env.reset() writer.add_scalar("evaluator/episode_reward", episode_reward, episode_idx) writer.add_scalar("evaluator/episode_length", episode_length, episode_idx) episode_reward = 0 episode_length = 0 episode_idx += 1 param = param_queue.get() model.load_state_dict(param) print("Updated Parameter..")
class DuelingAgent(): """Interacts with and learns from the environment.""" def __init__(self, state_size, action_size, seed): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action seed (int): random seed """ self.state_size = state_size self.action_size = action_size self.seed = random.seed(seed) # Q-Network self.qnetwork_local = DuelingDQN(state_size, action_size, seed).to(device) self.qnetwork_target = DuelingDQN(state_size, action_size, seed).to(device) self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR) # Replay memory self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed) # Initialize time step (for updating every UPDATE_EVERY steps) self.t_step = 0 def step(self, state, action, reward, next_state, done): # Save experience in replay memory self.memory.add(state, action, reward, next_state, done) # Learn every UPDATE_EVERY time steps. self.t_step = (self.t_step + 1) % UPDATE_EVERY if self.t_step == 0: # If enough samples are available in memory, get random subset and learn if len(self.memory) > BATCH_SIZE: experiences = self.memory.sample() self.learn(experiences, GAMMA) def act(self, state, eps=0.): """Returns actions for given state as per current policy. Params ====== state (array_like): current state eps (float): epsilon, for epsilon-greedy action selection """ state = torch.from_numpy(state).float().unsqueeze(0).to(device) self.qnetwork_local.eval() with torch.no_grad(): action_values = self.qnetwork_local.act(state) self.qnetwork_local.train() # Epsilon-greedy action selection if random.random() > eps: return np.argmax(action_values.cpu().data.numpy()) else: return random.choice(np.arange(self.action_size)) def learn(self, experiences, gamma): """Update value parameters using given batch of experience tuples. Params ====== experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ states, actions, rewards, next_states, dones = experiences # Get max predicted Q values (for next states) from target model Q_targets_next = self.qnetwork_target(next_states).detach().max( 1)[0].unsqueeze(1) # Compute Q targets for current states Q_targets = rewards + (gamma * Q_targets_next * (1 - dones)) # Get expected Q values from local model Q_expected = self.qnetwork_local(states).gather(1, actions) # Compute loss loss = F.mse_loss(Q_expected, Q_targets) if random.uniform(0, 1) > 0.99: print(loss) # Minimize the loss self.optimizer.zero_grad() loss.backward() self.optimizer.step() # ------------------- update target network ------------------- # self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU) def soft_update(self, local_model, target_model, tau): """Soft update model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model (PyTorch model): weights will be copied from target_model (PyTorch model): weights will be copied to tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data)
class train_DQN(): def __init__(self, env_id, max_step = 1e5, prior_alpha = 0.6, prior_beta_start = 0.4, epsilon_start = 1.0, epsilon_final = 0.01, epsilon_decay = 500, batch_size = 32, gamma = 0.99, target_update_interval=1000, save_interval = 1e4, ): self.prior_beta_start = prior_beta_start self.max_step = int(max_step) self.batch_size = batch_size self.gamma = gamma self.target_update_interval = target_update_interval self.save_interval = save_interval self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.env = gym.make(env_id) self.model = DuelingDQN(self.env).to(self.device) self.target_model = DuelingDQN(self.env).to(self.device) self.target_model.load_state_dict(self.model.state_dict()) self.replay_buffer = PrioritizedReplayBuffer(100000,alpha=prior_alpha) self.optimizer = optim.Adam(self.model.parameters()) self.writer = SummaryWriter(comment="-{}-learner".format(self.env.unwrapped.spec.id)) # decay function self.scheduler = optim.lr_scheduler.StepLR(self.optimizer,step_size=1000,gamma=0.99) self.beta_by_frame = lambda frame_idx: min(1.0, self.prior_beta_start + frame_idx * (1.0 - self.prior_beta_start) / 1000) self.epsilon_by_frame = lambda frame_idx: epsilon_final + (epsilon_start - epsilon_final) * math.exp(-1. * frame_idx / epsilon_decay) def update_target(self,current_model, target_model): target_model.load_state_dict(current_model.state_dict()) def compute_td_loss(self,batch_size, beta): state, action, reward, next_state, done, weights, indices = self.replay_buffer.sample(batch_size, beta) state = torch.FloatTensor(state).to(self.device) next_state = torch.FloatTensor(next_state).to(self.device) action = torch.LongTensor(action).to(self.device) reward = torch.FloatTensor(reward).to(self.device) done = torch.FloatTensor(done).to(self.device) weights = torch.FloatTensor(weights).to(self.device) batch = (state, action, reward, next_state, done, weights) # q_values = self.model(state) # next_q_values = self.target_model(next_state) # q_value = q_values.gather(1, action.unsqueeze(1)).squeeze(1) # next_q_value = next_q_values.max(1)[0] # expected_q_value = reward + self.gamma * next_q_value * (1 - done) # td_error = torch.abs(expected_q_value.detach() - q_value) # loss = (td_error).pow(2) * weights # prios = loss+1e-5#0.9 * torch.max(td_error)+(1-0.9)*td_error # loss = loss.mean() loss, prios = utils.compute_loss(self.model,self.target_model, batch,1) self.optimizer.zero_grad() loss.backward() self.scheduler.step() self.replay_buffer.update_priorities(indices, prios) self.optimizer.step() return loss def train(self): losses = [] all_rewards = [] episode_reward = 0 episode_idx = 0 episode_length = 0 state = self.env.reset() for frame_idx in range(self.max_step): epsilon = self.epsilon_by_frame(frame_idx) action,_ = self.model.act(torch.FloatTensor((state)).to(self.device), epsilon) next_state, reward, done, _ = self.env.step(action) self.replay_buffer.add(state, action, reward, next_state, done) state = next_state episode_reward += reward episode_length += 1 if done: state = self.env.reset() all_rewards.append(episode_reward) self.writer.add_scalar("actor/episode_reward", episode_reward, episode_idx) self.writer.add_scalar("actor/episode_length", episode_length, episode_idx) # print("episode: ",episode_idx, " reward: ", episode_reward) episode_reward = 0 episode_length = 0 episode_idx += 1 if len(self.replay_buffer) > self.batch_size: beta = self.beta_by_frame(frame_idx) loss = self.compute_td_loss(self.batch_size, beta) losses.append(loss.item()) self.writer.add_scalar("learner/loss", loss, frame_idx) if frame_idx % self.target_update_interval == 0: print("update target...") self.update_target(self.model, self.target_model) if frame_idx % self.save_interval == 0 or frame_idx == self.max_step-1: print("save model...") self.save_model(frame_idx) def save_model(self, idx): torch.save(self.model.state_dict(), "./model{}.pth".format(idx)) def load_model(self,idx): with open("model{}.pth".format(idx), "rb") as f: print("loading weights_{}".format(idx)) self.model.load_state_dict(torch.load(f,map_location="cpu"))
def evaluator(args): comm = global_dict['comm_world'] writer = SummaryWriter(log_dir=os.path.join(args['log_dir'], 'eval')) args['clip_rewards'] = False args['episode_life'] = False env = make_atari(args['env']) env = wrap_atari_dqn(env, args) seed = args['seed'] - 1 utils.set_global_seeds(seed, use_torch=True) env.seed(seed) torch.set_num_threads(1) model = DuelingDQN(env, args) recv_param_buf = bytearray(100 * 1024 * 1024) comm.Send(b'', dest=global_dict['rank_learner']) comm.Recv(buf=recv_param_buf, source=global_dict['rank_learner']) param = pickle.loads(recv_param_buf) model.load_state_dict(param) episode_reward, episode_length, episode_idx = 0, 0, 0 state = env.reset() tb_dict = {k: [] for k in ['episode_reward', 'episode_length']} while True: action, _ = model.act(torch.FloatTensor(np.array(state)), 0.) next_state, reward, done, _ = env.step(action) state = next_state episode_reward += reward episode_length += 1 if done or episode_length == args['max_episode_length']: state = env.reset() tb_dict["episode_reward"].append(episode_reward) tb_dict["episode_length"].append(episode_length) episode_reward = 0 episode_length = 0 episode_idx += 1 comm.Send(b'', dest=global_dict['rank_learner']) comm.Recv(buf=recv_param_buf, source=global_dict['rank_learner']) param = pickle.loads(recv_param_buf) model.load_state_dict(param) if (episode_idx * args['num_envs_per_worker']) % args['tb_interval'] == 0: writer.add_scalar('evaluator/1_episode_reward_mean', np.mean(tb_dict['episode_reward']), episode_idx) writer.add_scalar('evaluator/2_episode_reward_max', np.max(tb_dict['episode_reward']), episode_idx) writer.add_scalar('evaluator/3_episode_reward_min', np.min(tb_dict['episode_reward']), episode_idx) writer.add_scalar('evaluator/4_episode_reward_std', np.std(tb_dict['episode_reward']), episode_idx) writer.add_scalar('evaluator/5_episode_length_mean', np.mean(tb_dict['episode_length']), episode_idx) tb_dict['episode_reward'].clear() tb_dict['episode_length'].clear()
class Worker(mp.Process): def __init__(self, worker_id, env_id, seed, epsilon, size, lock, n_steps, gamma, send_interval, task_queue, buffer, max_episode_length): mp.Process.__init__(self) self.worker_id = worker_id self.env = gym.make(env_id) self.seed = seed self.task_queue = task_queue self.buffer = buffer self.max_episode_length = max_episode_length self.send_interval = send_interval self.storage = BatchStorage(n_steps, gamma) self.size = size self.memory = [] self.model = DuelingDQN(self.env) # self.writer = SummaryWriter(comment="-{}-actor{}".format(env_id, worker_id)) self.lock = lock self.set_all_seeds() self.epsilon = epsilon def set_all_seeds(self): self.env.seed(self.seed) np.random.seed(self.seed) random.seed(self.seed) torch.manual_seed(self.seed) torch.cuda.manual_seed_all(self.seed) def update_weights(self, DQN_state_dict): self.model.load_state_dict(DQN_state_dict) def record_batch(self): episode_reward, episode_length, episode_idx, actor_idx = 0, 0, 0, 0 state = self.env.reset() self.storage.reset() self.memory = [] # while actor_idx < self.size: while True: action, q_values = self.model.act(torch.FloatTensor(np.array(state)), self.epsilon) next_state, reward, done, _ = self.env.step(action) self.storage.add(state, reward, action, done, q_values) state = next_state episode_reward += reward episode_length += 1 actor_idx += 1 if done or episode_length >= self.max_episode_length: state = self.env.reset() # self.writer.add_scalar("actor/episode_reward", episode_reward, episode_idx) # self.writer.add_scalar("actor/episode_length", episode_length, episode_idx) episode_reward = 0 episode_length = 0 episode_idx += 1 if done or len(self.storage) == self.send_interval: batch, prios = self.storage.make_batch() self.memory.append((*batch, prios)) # for i in range(len(prios)): # self.buffer.add(batch[0][i],batch[1][i],batch[2][i],batch[3][i],batch[4][i],prios[i]) batch, prios = None, None self.storage.reset() if done: break def run(self): while True: ########## run loop task = self.task_queue.get(block=True) if task["desc"] == "record_batch": # print("start record batch") self.record_batch() self.buffer.put(self.memory) self.task_queue.task_done() # print("record batch done") elif task["desc"] == "set_pi_weights": # print("set weight") self.update_weights(task["pi_state_dict"]) self.task_queue.task_done() # print("set weight done") elif task["desc"] == "cleanup": # print("clean up") self.env.close() self.task_queue.task_done()
def exploration(args, actor_id, n_actors, replay_ip, param_queue, sample_enque, sample_deque): ctx = zmq.Context() batch_socket = ctx.socket(zmq.DEALER) batch_socket.setsockopt(zmq.IDENTITY, pickle.dumps('actor-{}'.format(actor_id))) batch_socket.connect('tcp://{}:51001'.format(replay_ip)) writer = SummaryWriter(comment="-{}-actor{}".format(args.env, actor_id)) env = make_atari(args.env) env = wrap_atari_dqn(env, args) seed = args.seed + actor_id utils.set_global_seeds(seed, use_torch=True) env.seed(seed) model = DuelingDQN(env) epsilon = args.eps_base ** (1 + actor_id / (n_actors - 1) * args.eps_alpha) storage = BatchStorage(args.n_steps, args.gamma) param = param_queue.get(block=True) model.load_state_dict(param) param = None print("Received First Parameter!") episode_reward, episode_length, episode_idx, actor_idx = 0, 0, 0, 0 state = env.reset() while True: action, q_values = model.act(torch.FloatTensor(np.array(state)), epsilon) next_state, reward, done, _ = env.step(action) storage.add(state, reward, action, done, q_values) state = next_state episode_reward += reward episode_length += 1 actor_idx += 1 if done or episode_length == args.max_episode_length: state = env.reset() writer.add_scalar("actor/episode_reward", episode_reward, episode_idx) writer.add_scalar("actor/episode_length", episode_length, episode_idx) episode_reward = 0 episode_length = 0 episode_idx += 1 if actor_idx % args.update_interval == 0: try: param = param_queue.get(block=False) model.load_state_dict(param) print("Updated Parameter..") except queue.Empty: pass # get sample batch after each step while sample_enque: idxes = sample_enque.get() sample_deque.put(storage.get_sample_batch(idxes)) # only pass the prios and get indexes from ReplayBuffer if len(storage) == args.send_interval: batch, prios = storage.make_batch() data = pickle.dumps(prios) batch, prios = None, None storage.reset() batch_socket.send(data, copy=False) _, idxes = batch_socket.recv_multipart(copy=False) storage.add_batch(batch, idxes)