Esempio n. 1
0
 def __init__(self,
              recursions=1,
              stride=1,
              kernel_size=5,
              use_perceptual_loss=True,
              wgan=False,
              w_col=1,
              w_tex=0.001,
              w_per=0.1,
              gaussian=False,
              lpips_rot_flip=False,
              **kwargs):
     super(GeneratorLoss, self).__init__()
     self.pixel_loss = nn.L1Loss()
     self.color_filter = FilterLow(recursions=recursions,
                                   stride=stride,
                                   kernel_size=kernel_size,
                                   padding=False,
                                   gaussian=gaussian)
     if torch.cuda.is_available():
         self.pixel_loss = self.pixel_loss.cuda()
         self.color_filter = self.color_filter.cuda()
     self.perceptual_loss = PerceptualLoss(rotations=lpips_rot_flip,
                                           flips=lpips_rot_flip)
     self.use_perceptual_loss = use_perceptual_loss
     self.wasserstein = wgan
     self.w_col = w_col
     self.w_tex = w_tex
     self.w_per = w_per
     self.last_tex_loss = 0
     self.last_per_loss = 0
     self.last_col_loss = 0
     self.last_mean_loss = 0
Esempio n. 2
0
    def __init__(self,
                 recursions=1,
                 stride=1,
                 kernel_size=5,
                 use_perceptual_loss=True,
                 wgan=False,
                 w_col=1,
                 w_tex=0.001,
                 w_per=0.1,
                 gaussian=False,
                 lpips_rot_flip=False,
                 **kwargs):
        super(GeneratorLoss, self).__init__()
        self.pixel_loss = nn.L1Loss()
        self.per_type = kwargs['per_type']
        if kwargs['filter'].lower() == 'gau':
            self.color_filter = FilterLow(recursions=recursions,
                                          stride=stride,
                                          kernel_size=kernel_size,
                                          padding=False,
                                          gaussian=True)
        elif kwargs['filter'].lower() == 'avg_pool':
            self.color_filter = FilterLow(recursions=recursions,
                                          stride=stride,
                                          kernel_size=kernel_size,
                                          padding=False,
                                          gaussian=False)
        elif kwargs['filter'].lower() == 'wavelet':
            self.color_filter = self.filter_wavelet_LL
        else:
            raise NotImplementedError(
                'Frequency Separation type [{:s}] not recognized'.format(
                    kwargs['filter']))

        if torch.cuda.is_available():
            self.pixel_loss = self.pixel_loss.cuda()
        if isinstance(self.color_filter, FilterLow):
            self.color_filter = self.color_filter.cuda()
        if self.per_type == 'LPIPS':
            self.perceptual_loss = PerceptualLoss(rotations=lpips_rot_flip,
                                                  flips=lpips_rot_flip)
        elif self.per_type == 'VGG':
            self.perceptual_loss = PerceptualLossVGG16()
        else:
            raise NotImplemented('{} is not recognized'.format(self.per_type))
        self.use_perceptual_loss = use_perceptual_loss
        self.wasserstein = wgan
        self.w_col = w_col
        self.w_tex = w_tex
        self.w_per = w_per
        self.last_tex_loss = 0
        self.last_per_loss = 0
        self.last_col_loss = 0
        self.gaussian = gaussian
        self.last_mean_loss = 0
Esempio n. 3
0
class GeneratorLoss(nn.Module):
    def __init__(self,
                 recursions=1,
                 stride=1,
                 kernel_size=5,
                 use_perceptual_loss=True,
                 wgan=False,
                 w_col=1,
                 w_tex=0.001,
                 w_per=0.1,
                 gaussian=False,
                 lpips_rot_flip=False,
                 **kwargs):
        super(GeneratorLoss, self).__init__()
        self.pixel_loss = nn.L1Loss()
        self.color_filter = FilterLow(recursions=recursions,
                                      stride=stride,
                                      kernel_size=kernel_size,
                                      padding=False,
                                      gaussian=gaussian)
        if torch.cuda.is_available():
            self.pixel_loss = self.pixel_loss.cuda()
            self.color_filter = self.color_filter.cuda()
        self.perceptual_loss = PerceptualLoss(rotations=lpips_rot_flip,
                                              flips=lpips_rot_flip)
        self.use_perceptual_loss = use_perceptual_loss
        self.wasserstein = wgan
        self.w_col = w_col
        self.w_tex = w_tex
        self.w_per = w_per
        self.last_tex_loss = 0
        self.last_per_loss = 0
        self.last_col_loss = 0
        self.last_mean_loss = 0

    def forward(self, tex_labels, out_images, target_images):
        # Adversarial Texture Loss
        self.last_tex_loss = generator_loss(tex_labels,
                                            wasserstein=self.wasserstein)
        # Perception Loss
        self.last_per_loss = self.perceptual_loss(out_images, target_images)
        # Color Loss
        self.last_col_loss = self.color_loss(out_images, target_images)
        loss = self.w_col * self.last_col_loss + self.w_tex * self.last_tex_loss
        if self.use_perceptual_loss:
            loss += self.w_per * self.last_per_loss
        return loss

    def color_loss(self, x, y):
        return self.pixel_loss(self.color_filter(x), self.color_filter(y))

    def rgb_loss(self, x, y):
        return self.pixel_loss(x.mean(3).mean(2), y.mean(3).mean(2))

    def mean_loss(self, x, y):
        return self.pixel_loss(
            x.view(x.size(0), -1).mean(1),
            y.view(y.size(0), -1).mean(1))
Esempio n. 4
0
class GeneratorLoss(nn.Module):
    def __init__(self,
                 recursions=1,
                 stride=1,
                 kernel_size=5,
                 use_perceptual_loss=True,
                 wgan=False,
                 w_col=1,
                 w_tex=0.001,
                 w_per=0.1,
                 gaussian=False,
                 lpips_rot_flip=False,
                 **kwargs):
        super(GeneratorLoss, self).__init__()
        self.pixel_loss = nn.L1Loss()
        self.per_type = kwargs['per_type']
        if kwargs['filter'].lower() == 'gau':
            self.color_filter = FilterLow(recursions=recursions,
                                          stride=stride,
                                          kernel_size=kernel_size,
                                          padding=False,
                                          gaussian=True)
        elif kwargs['filter'].lower() == 'avg_pool':
            self.color_filter = FilterLow(recursions=recursions,
                                          stride=stride,
                                          kernel_size=kernel_size,
                                          padding=False,
                                          gaussian=False)
        elif kwargs['filter'].lower() == 'wavelet':
            self.color_filter = self.filter_wavelet_LL
        else:
            raise NotImplementedError(
                'Frequency Separation type [{:s}] not recognized'.format(
                    kwargs['filter']))

        if torch.cuda.is_available():
            self.pixel_loss = self.pixel_loss.cuda()
        if isinstance(self.color_filter, FilterLow):
            self.color_filter = self.color_filter.cuda()
        if self.per_type == 'LPIPS':
            self.perceptual_loss = PerceptualLoss(rotations=lpips_rot_flip,
                                                  flips=lpips_rot_flip)
        elif self.per_type == 'VGG':
            self.perceptual_loss = PerceptualLossVGG16()
        else:
            raise NotImplemented('{} is not recognized'.format(self.per_type))
        self.use_perceptual_loss = use_perceptual_loss
        self.wasserstein = wgan
        self.w_col = w_col
        self.w_tex = w_tex
        self.w_per = w_per
        self.last_tex_loss = 0
        self.last_per_loss = 0
        self.last_col_loss = 0
        self.gaussian = gaussian
        self.last_mean_loss = 0

    def forward(self, tex_labels, out_images, target_images):
        # Adversarial Texture Loss
        self.last_tex_loss = generator_loss(tex_labels,
                                            wasserstein=self.wasserstein)
        # Perception Loss
        self.last_per_loss = self.perceptual_loss(out_images, target_images)
        # Color Loss
        self.last_col_loss = self.color_loss(out_images, target_images)
        loss = self.w_col * self.last_col_loss + self.w_tex * self.last_tex_loss
        if self.use_perceptual_loss:
            loss += self.w_per * self.last_per_loss
        return loss

    def color_loss(self, x, y):
        return self.pixel_loss(self.color_filter(x), self.color_filter(y))

    def rgb_loss(self, x, y):
        return self.pixel_loss(x.mean(3).mean(2), y.mean(3).mean(2))

    def mean_loss(self, x, y):
        return self.pixel_loss(
            x.view(x.size(0), -1).mean(1),
            y.view(y.size(0), -1).mean(1))

    def filter_wavelet_LL(self, x, norm=True):
        DWT2 = DWTForward(J=1, wave='haar', mode='reflect').cuda()
        LL, Hc = DWT2(x)

        return LL * 0.5 if norm else LL