def pretrain(dataset): model = GAT( num_features=args.input_dim, hidden_size=args.hidden_size, embedding_size=args.embedding_size, alpha=args.alpha, ).to(device) print(model) optimizer = Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) # data process dataset = utils.data_preprocessing(dataset) adj = dataset.adj.to(device) adj_label = dataset.adj_label.to(device) M = utils.get_M(adj).to(device) # data and label x = torch.Tensor(dataset.x).to(device) y = dataset.y.cpu().numpy() for epoch in range(args.max_epoch): model.train() A_pred, z = model(x, adj, M) loss = F.binary_cross_entropy(A_pred.view(-1), adj_label.view(-1)) optimizer.zero_grad() loss.backward() optimizer.step() with torch.no_grad(): _, z = model(x, adj, M) kmeans = KMeans(n_clusters=args.n_clusters, n_init=20).fit(z.data.cpu().numpy()) acc, nmi, ari, f1 = eva(y, kmeans.labels_, epoch) if epoch % 5 == 0: torch.save(model.state_dict(), f"./pretrain/predaegc_{args.name}_{epoch}.pkl")
model.eval() output = model.forward(features, adj) loss = F.nll_loss(output[idx_test], labels[idx_test]) acc = accuracy(output[idx_test], labels[idx_test]) print('Test result\tloss:{:.4f}\tacc:{:.4f}'.format(loss, acc)) if __name__ == '__main__': seed = 2020 hidden_dim = 16 dropout = 0.5 learning_rate = 0.01 weight_decay = 5e-4 epochs = 200 set_seed(seed) adj, features, labels, idx_train, idx_val, idx_test = load_data() model = GAT(input_dim=features.shape[1], hidden_dim=hidden_dim, output_dim=labels.max().item() + 1, dropout=dropout, head_num=8) optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay) for e in range(epochs): train(e, model, optimizer, adj, features, labels, idx_train, idx_val) test(model, adj, features, labels, idx_test)
torch.backends.cudnn.deterministic = True torch.cuda.empty_cache() # Load data adj, features, labels, idx_train, idx_val, idx_test = load_data(path=".", dataset="cora") model = GAT( nfeat=features.shape[1], nhid=args.hidden, nhead=args.nb_heads, nclass=int(labels.max()) + 1, p_dropout=args.dropout, ) optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) if args.cuda: model.cuda() features = features.cuda() adj = adj.cuda() labels = labels.cuda() idx_train = idx_train.cuda() idx_val = idx_val.cuda() idx_test = idx_test.cuda() def train(epoch): model.train()
import itertools from model import GAT from comments import build_karate_club_graph embed = nn.Embedding(34, 5) # 34 nodes with embedding dim equal to 5 inputs = embed.weight labeled_nodes = torch.tensor( [0, 33]) # only the instructor and the president nodes are labeled labels = torch.tensor([0, 1]) # their labels are different edge_index = torch.from_numpy(build_karate_club_graph()).long() net = GAT(4, 5, 5, 2) optimizer = torch.optim.Adam(itertools.chain(net.parameters(), embed.parameters()), lr=0.01) all_logits = [] for epoch in range(5000): logits = net(inputs, edge_index) # we save the logits for visualization later all_logits.append(logits.detach()) logp = F.log_softmax(logits, 1) # we only compute loss for labeled nodes loss = F.nll_loss(logp[labeled_nodes], labels) optimizer.zero_grad() loss.backward() optimizer.step()
model = GAT(n_input = features.shape[1], n_hidden = args.hidden, n_classes = int(labels.max()) + 1, dropout = args.dropout, alpha = args.alpha, n_heads = args.n_heads) if args.use_cuda: model.cuda() features = features.cuda() adj = adj.cuda() labels = labels.cuda() idx_train = idx_train.cuda() idx_val = idx_val.cuda() idx_test = idx_test.cuda() optimizer = optim.Adam(model.parameters(), lr = args.lr, weight_decay = args.weight_decay) features, adj, labels = Variable(features), Variable(adj), Variable(labels) # train start_time = time.time() loss_values = [] patience_counter = 0 best = args.epochs + 1 best_epoch = 0 for epoch in range(args.epochs): loss_values.append(train(epoch, model, optimizer, features, adj, idx_train, idx_val))
def main(args): # load and preprocess dataset data = CoraGraphDataset() g = data[0] if args.gpu < 0: cuda = False else: cuda = True g = g.int().to(args.gpu) features = g.ndata['feat'] labels = g.ndata['label'] train_mask = g.ndata['train_mask'] val_mask = g.ndata['val_mask'] test_mask = g.ndata['test_mask'] num_feats = features.shape[1] n_classes = data.num_labels n_edges = data.graph.number_of_edges() x = g.nodes().cpu() print(features) print(g) x = input() print("""----Data statistics------' #Edges %d #Classes %d #Train samples %d #Val samples %d #Test samples %d""" % (n_edges, n_classes, train_mask.int().sum().item(), val_mask.int().sum().item(), test_mask.int().sum().item())) # add self loop g = dgl.remove_self_loop(g) g = dgl.add_self_loop(g) n_edges = g.number_of_edges() # create model heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads] model = GAT(args.num_layers, num_feats, args.num_hidden, n_classes, heads, F.elu, args.in_drop, args.attn_drop, args.negative_slope, args.residual) print(model) if args.early_stop: stopper = EarlyStopping(patience=100) if cuda: model.cuda() loss_fcn = torch.nn.CrossEntropyLoss() # use optimizer optimizer = torch.optim.Adam( model.parameters(), lr=args.lr, weight_decay=args.weight_decay) # initialize graph dur = [] for epoch in range(args.epochs): model.train() if epoch >= 3: t0 = time.time() # forward logits = model(g, features) loss = loss_fcn(logits[train_mask], labels[train_mask]) optimizer.zero_grad() loss.backward() optimizer.step() if epoch >= 3: dur.append(time.time() - t0) train_acc = accuracy(logits[train_mask], labels[train_mask]) if args.fastmode: val_acc = accuracy(logits[val_mask], labels[val_mask]) else: val_acc = evaluate(model, g, features, labels, val_mask) if args.early_stop: if stopper.step(val_acc, model): break print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | TrainAcc {:.4f} |" " ValAcc {:.4f} | ETputs(KTEPS) {:.2f}". format(epoch, np.mean(dur), loss.item(), train_acc, val_acc, n_edges / np.mean(dur) / 1000)) print() if args.early_stop: model.load_state_dict(torch.load('es_checkpoint.pt')) acc = evaluate(model, g, features, labels, test_mask) print("Test Accuracy {:.4f}".format(acc))
def train(args): ## load training data print "loading training data ......" node_num, class_num = removeIsolated(args.suffix) label, feature_map, adj_lists = collectGraph_train(node_num, class_num, args.feat_dim, args.num_sample, args.suffix) label = torch.LongTensor(label) feature_map = torch.FloatTensor(feature_map) model = GAT(args.feat_dim, args.embed_dim, class_num, args.alpha, args.dropout, args.nheads, args.use_cuda) optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay) scheduler = StepLR(optimizer, step_size=args.step_size, gamma=args.learning_rate_decay) ## train np.random.seed(2) random.seed(2) rand_indices = np.random.permutation(node_num) train_nodes = rand_indices[:args.train_num] val_nodes = rand_indices[args.train_num:] if args.use_cuda: model.cuda() label = label.cuda() feature_map = feature_map.cuda() epoch_num = args.epoch_num batch_size = args.batch_size iter_num = int(math.ceil(args.train_num / float(batch_size))) check_loss = [] val_accuracy = [] check_step = args.check_step train_loss = 0.0 iter_cnt = 0 for e in range(epoch_num): model.train() scheduler.step() random.shuffle(train_nodes) for batch in range(iter_num): batch_nodes = train_nodes[batch * batch_size:(batch + 1) * batch_size] batch_label = label[batch_nodes].squeeze() batch_neighbors = [adj_lists[node] for node in batch_nodes] _, logit = model(feature_map, batch_nodes, batch_neighbors) loss = F.nll_loss(logit, batch_label) optimizer.zero_grad() loss.backward() optimizer.step() iter_cnt += 1 train_loss += loss.cpu().item() if iter_cnt % check_step == 0: check_loss.append(train_loss / check_step) print time.strftime( '%Y-%m-%d %H:%M:%S' ), "epoch: {}, iter: {}, loss:{:.4f}".format( e, iter_cnt, train_loss / check_step) train_loss = 0.0 ## validation model.eval() group = int(math.ceil(len(val_nodes) / float(batch_size))) val_cnt = 0 for batch in range(group): batch_nodes = val_nodes[batch * batch_size:(batch + 1) * batch_size] batch_label = label[batch_nodes].squeeze() batch_neighbors = [adj_lists[node] for node in batch_nodes] _, logit = model(feature_map, batch_nodes, batch_neighbors) batch_predict = np.argmax(logit.cpu().detach().numpy(), axis=1) val_cnt += np.sum(batch_predict == batch_label.cpu().numpy()) val_accuracy.append(val_cnt / float(len(val_nodes))) print time.strftime('%Y-%m-%d %H:%M:%S' ), "Epoch: {}, Validation Accuracy: {:.4f}".format( e, val_cnt / float(len(val_nodes))) print "******" * 10 checkpoint_path = 'checkpoint/checkpoint_{}.pth'.format( time.strftime('%Y%m%d%H%M')) torch.save( { 'train_num': args.train_num, 'epoch_num': args.epoch_num, 'batch_size': args.batch_size, 'learning_rate': args.learning_rate, 'embed_dim': args.embed_dim, 'num_sample': args.num_sample, 'graph_state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), }, checkpoint_path) vis = visdom.Visdom(env='GraphAttention', port='8099') vis.line(X=np.arange(1, len(check_loss) + 1, 1) * check_step, Y=np.array(check_loss), opts=dict(title=time.strftime('%Y-%m-%d %H:%M:%S'), xlabel='itr.', ylabel='loss')) vis.line(X=np.arange(1, len(val_accuracy) + 1, 1), Y=np.array(val_accuracy), opts=dict(title=time.strftime('%Y-%m-%d %H:%M:%S'), xlabel='epoch', ylabel='accuracy')) return checkpoint_path, class_num