def gae_for(args): print("Using {} dataset".format(args.dataset_str)) adj, features, y_test, tx, ty, test_maks, true_labels = load_data( args.dataset_str) n_nodes, feat_dim = features.shape # Store original adjacency matrix (without diagonal entries) for later adj_orig = adj adj_orig = adj_orig - sp.dia_matrix( (adj_orig.diagonal()[np.newaxis, :], [0]), shape=adj_orig.shape) adj_orig.eliminate_zeros() adj_train, train_edges, val_edges, val_edges_false, test_edges, test_edges_false = mask_test_edges( adj) adj = adj_train # Before proceeding further, make the structure for doing deepWalk if args.dw == 1: print('Using deepWalk regularization...') G = load_edgelist_from_csr_matrix(adj_orig, undirected=True) print("Number of nodes: {}".format(len(G.nodes()))) num_walks = len(G.nodes()) * args.number_walks print("Number of walks: {}".format(num_walks)) data_size = num_walks * args.walk_length print("Data size (walks*length): {}".format(data_size)) # Some preprocessing adj_norm = preprocess_graph(adj) adj_label = adj_train + sp.eye(adj_train.shape[0]) # adj_label = sparse_to_tuple(adj_label) # adj_label = torch.DoubleTensor(adj_label.toarray()) adj_label = torch.FloatTensor(adj_label.toarray()) pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum() norm = adj.shape[0] * adj.shape[0] / float( (adj.shape[0] * adj.shape[0] - adj.sum()) * 2) if args.model == 'gcn_vae': model = GCNModelVAE(feat_dim, args.hidden1, args.hidden2, args.dropout) else: model = GCNModelAE(feat_dim, args.hidden1, args.hidden2, args.dropout) optimizer = optim.Adam(model.parameters(), lr=args.lr) if args.dw == 1: sg = SkipGram(args.hidden2, adj.shape[0]) optimizer_dw = optim.Adam(sg.parameters(), lr=args.lr_dw) # Construct the nodes for doing random walk. Doing it before since the seed is fixed nodes_in_G = list(G.nodes()) chunks = len(nodes_in_G) // args.number_walks random.Random().shuffle(nodes_in_G) hidden_emb = None for epoch in tqdm(range(args.epochs)): t = time.time() model.train() optimizer.zero_grad() z, mu, logvar = model(features, adj_norm) # After back-propagating gae loss, now do the deepWalk regularization if args.dw == 1: sg.train() if args.full_number_walks > 0: walks = build_deepwalk_corpus(G, num_paths=args.full_number_walks, path_length=args.walk_length, alpha=0, rand=random.Random(SEED)) else: walks = build_deepwalk_corpus_iter( G, num_paths=args.number_walks, path_length=args.walk_length, alpha=0, rand=random.Random(SEED), chunk=epoch % chunks, nodes=nodes_in_G) for walk in walks: if args.context == 1: # Construct the pairs for predicting context node # for each node, treated as center word curr_pair = (int(walk[center_node_pos]), []) for center_node_pos in range(len(walk)): # for each window position for w in range(-args.window_size, args.window_size + 1): context_node_pos = center_node_pos + w # make soure not jump out sentence if context_node_pos < 0 or context_node_pos >= len( walk ) or center_node_pos == context_node_pos: continue context_node_idx = walk[context_node_pos] curr_pair[1].append(int(context_node_idx)) else: # first item in the walk is the starting node curr_pair = (int(walk[0]), [ int(context_node_idx) for context_node_idx in walk[1:] ]) if args.ns == 1: neg_nodes = [] pos_nodes = set(walk) while len(neg_nodes) < args.walk_length - 1: rand_node = random.randint(0, n_nodes - 1) if rand_node not in pos_nodes: neg_nodes.append(rand_node) neg_nodes = torch.from_numpy(np.array(neg_nodes)).long() # Do actual prediction src_node = torch.from_numpy(np.array([curr_pair[0]])).long() tgt_nodes = torch.from_numpy(np.array(curr_pair[1])).long() optimizer_dw.zero_grad() log_pos = sg(src_node, tgt_nodes, neg_sample=False) if args.ns == 1: loss_neg = sg(src_node, neg_nodes, neg_sample=True) loss_dw = log_pos + loss_neg else: loss_dw = log_pos loss_dw.backward(retain_graph=True) cur_dw_loss = loss_dw.item() optimizer_dw.step() loss = loss_function(preds=model.dc(z), labels=adj_label, mu=mu, logvar=logvar, n_nodes=n_nodes, norm=norm, pos_weight=pos_weight) loss.backward() cur_loss = loss.item() optimizer.step() hidden_emb = mu.data.numpy() roc_curr, ap_curr = get_roc_score(hidden_emb, adj_orig, val_edges, val_edges_false) if args.dw == 1: tqdm.write( "Epoch: {}, train_loss_gae={:.5f}, train_loss_dw={:.5f}, val_ap={:.5f}, time={:.5f}" .format(epoch + 1, cur_loss, cur_dw_loss, ap_curr, time.time() - t)) else: tqdm.write( "Epoch: {}, train_loss_gae={:.5f}, val_ap={:.5f}, time={:.5f}". format(epoch + 1, cur_loss, ap_curr, time.time() - t)) if (epoch + 1) % 10 == 0: tqdm.write("Evaluating intermediate results...") kmeans = KMeans(n_clusters=args.n_clusters, random_state=0).fit(hidden_emb) predict_labels = kmeans.predict(hidden_emb) cm = clustering_metrics(true_labels, predict_labels) cm.evaluationClusterModelFromLabel(tqdm) roc_score, ap_score = get_roc_score(hidden_emb, adj_orig, test_edges, test_edges_false) tqdm.write('ROC: {}, AP: {}'.format(roc_score, ap_score)) np.save('logs/emb_epoch_{}.npy'.format(epoch + 1), hidden_emb) tqdm.write("Optimization Finished!") roc_score, ap_score = get_roc_score(hidden_emb, adj_orig, test_edges, test_edges_false) tqdm.write('Test ROC score: ' + str(roc_score)) tqdm.write('Test AP score: ' + str(ap_score)) kmeans = KMeans(n_clusters=args.n_clusters, random_state=0).fit(hidden_emb) predict_labels = kmeans.predict(hidden_emb) cm = clustering_metrics(true_labels, predict_labels) cm.evaluationClusterModelFromLabel(tqdm) if args.plot == 1: cm.plotClusters(tqdm, hidden_emb, true_labels)
def gae_for(args): print("Using {} dataset".format(args.dataset_str)) adj, features, y_test, tx, ty, test_maks, true_labels = load_data(args.dataset_str) n_nodes, feat_dim = features.shape # Store original adjacency matrix (without diagonal entries) for later adj_orig = adj adj_orig = adj_orig - sp.dia_matrix((adj_orig.diagonal()[np.newaxis, :], [0]), shape=adj_orig.shape) adj_orig.eliminate_zeros() adj_train, train_edges, val_edges, val_edges_false, test_edges, test_edges_false = mask_test_edges(adj) adj = adj_train # Some preprocessing adj_norm = preprocess_graph(adj) adj_label = adj_train + sp.eye(adj_train.shape[0]) # adj_label = sparse_to_tuple(adj_label) # adj_label = torch.DoubleTensor(adj_label.toarray()) adj_label = torch.FloatTensor(adj_label.toarray()) pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum() norm = adj.shape[0] * adj.shape[0] / float((adj.shape[0] * adj.shape[0] - adj.sum()) * 2) if args.model == 'gcn_vae': model = GCNModelVAE(feat_dim, args.hidden1, args.hidden2, args.dropout) else: model = GCNModelAE(feat_dim, args.hidden1, args.hidden2, args.dropout) optimizer = optim.Adam(model.parameters(), lr=args.lr) hidden_emb = None for epoch in tqdm(range(args.epochs)): t = time.time() model.train() optimizer.zero_grad() z, mu, logvar = model(features, adj_norm) loss = loss_function(preds=model.dc(z), labels=adj_label, mu=mu, logvar=logvar, n_nodes=n_nodes, norm=norm, pos_weight=pos_weight) loss.backward() cur_loss = loss.item() optimizer.step() hidden_emb = mu.data.numpy() roc_curr, ap_curr = get_roc_score(hidden_emb, adj_orig, val_edges, val_edges_false) tqdm.write("Epoch: {}, train_loss_gae={:.5f}, val_ap={:.5f}, time={:.5f}".format( epoch + 1, cur_loss, ap_curr, time.time() - t)) if (epoch + 1) % 10 == 0: tqdm.write("Evaluating intermediate results...") kmeans = KMeans(n_clusters=args.n_clusters, random_state=0).fit(hidden_emb) predict_labels = kmeans.predict(hidden_emb) cm = clustering_metrics(true_labels, predict_labels) cm.evaluationClusterModelFromLabel(tqdm) roc_score, ap_score = get_roc_score(hidden_emb, adj_orig, test_edges, test_edges_false) tqdm.write('ROC: {}, AP: {}'.format(roc_score, ap_score)) np.save('logs/emb_epoch_{}.npy'.format(epoch + 1), hidden_emb) tqdm.write("Optimization Finished!") roc_score, ap_score = get_roc_score(hidden_emb, adj_orig, test_edges, test_edges_false) tqdm.write('Test ROC score: ' + str(roc_score)) tqdm.write('Test AP score: ' + str(ap_score)) kmeans = KMeans(n_clusters=args.n_clusters, random_state=0).fit(hidden_emb) predict_labels = kmeans.predict(hidden_emb) cm = clustering_metrics(true_labels, predict_labels) cm.evaluationClusterModelFromLabel(tqdm) if args.plot == 1: cm.plotClusters(tqdm, hidden_emb, true_labels)