def __init__(self, batch_size=8, steps=100, validate=False): super(DiscriminativeLearningRateTask, self).__init__() n_total = batch_size * steps dataset = XORDataset(n_total) if validate: n_train = int(n_total * 0.9) self.train_loader = DataLoader( Subset(dataset, range(n_train)), batch_size=batch_size ) self.val_loader = DataLoader( Subset(dataset, range(n_train, n_total)), batch_size=batch_size ) else: self.train_loader = DataLoader(dataset, batch_size=batch_size) self.val_loader = None self.batch_size = batch_size self.model = LinearMLP([8, 4, 1]) self.optimizer = optim.SGD( [ {"params": self.model.net[0].parameters(), "lr": 1e-3}, {"params": self.model.net[1].parameters(), "lr": 1e-5}, ], lr=1e-5, momentum=0.5, ) self.criterion = nn.MSELoss() self.device = torch.device("cuda")
def __init__(self, validate=False): super(ExtraXORTask, self).__init__() bs, steps = 8, 64 dataset = ExtraXORDataset(bs * steps, extra_dims=2) if validate: self.train_loader = DataLoader(Subset(dataset, range(steps - bs))) self.val_loader = DataLoader( Subset(dataset, range(steps - bs, steps))) else: self.train_loader = DataLoader(dataset) self.val_loader = None self.model = LinearMLP([8, 4, 1]) self.optimizer = optim.SGD(self.model.parameters(), lr=1e-5) self.criterion = nn.MSELoss() self.device = torch.device("cuda")
def __init__(self, validate=False): super(DiscriminativeLearningRateTask, self).__init__() bs, steps = 8, 64 dataset = XORDataset(bs * steps) if validate: self.train_loader = DataLoader(Subset(dataset, range(steps - bs))) self.val_loader = DataLoader( Subset(dataset, range(steps - bs, steps))) else: self.train_loader = DataLoader(dataset) self.val_loader = None dataset = XORDataset(128) self.model = LinearMLP([8, 4, 1]) self.optimizer = optim.SGD( [ { "params": self.model.net[0].parameters(), "lr": 1e-3 }, { "params": self.model.net[1].parameters(), "lr": 1e-5 }, ], lr=1e-5, momentum=0.5, ) self.criterion = nn.MSELoss() self.device = torch.device("cuda")
def __init__(self, batch_size=8, steps=100, validate=False): super(ExtraXORTask, self).__init__() n_total = batch_size * steps dataset = ExtraXORDataset(n_total, extra_dims=2) if validate: n_train = int(n_total * 0.9) self.train_loader = DataLoader(Subset(dataset, range(n_train)), batch_size=batch_size) self.val_loader = DataLoader(Subset(dataset, range(n_train, n_total)), batch_size=batch_size) else: self.train_loader = DataLoader(dataset, batch_size=batch_size) self.val_loader = None self.batch_size = batch_size self.model = LinearMLP([8, 4, 1]) self.optimizer = optim.SGD(self.model.parameters(), lr=1e-5) self.criterion = nn.MSELoss() self.device = torch.device("cuda")