Esempio n. 1
0
class AnoGAN:
    """AnoGAN Class
    """
    def __init__(self, opt):
        # super(AnoGAN, self).__init__(opt, dataloader)

        # Initalize variables.
        self.opt = opt

        self.niter = self.opt.niter
        self.start_iter = 0
        self.netd_niter = 5
        self.test_iter = 100
        self.lr = self.opt.lr
        self.batchsize = {'train': self.opt.batchsize, 'test': 1}

        self.pretrained = False

        self.phase = 'train'
        self.outf = self.opt.experiment_group
        self.algorithm = 'wgan'

        # LOAD DATA SET
        self.dataloader = {
            'train':
            provider('train',
                     opt.category,
                     batch_size=self.batchsize['train'],
                     num_workers=4),
            'test':
            provider('test',
                     opt.category,
                     batch_size=self.batchsize['test'],
                     num_workers=4)
        }

        self.trn_dir = os.path.join(self.outf, self.opt.experiment_name,
                                    'train')
        self.tst_dir = os.path.join(self.outf, self.opt.experiment_name,
                                    'test')

        self.test_img_dir = os.path.join(self.outf, self.opt.experiment_name,
                                         'test', 'images')
        if not os.path.isdir(self.test_img_dir):
            os.makedirs(self.test_img_dir)

        self.best_test_dir = os.path.join(self.outf, self.opt.experiment_name,
                                          'test', 'best_images')
        if not os.path.isdir(self.best_test_dir):
            os.makedirs(self.best_test_dir)

        self.weight_dir = os.path.join(self.trn_dir, 'weights')
        if not os.path.exists(self.weight_dir): os.makedirs(self.weight_dir)

        # -- Misc attributes
        self.epoch = 0

        self.l_con = l1_loss
        self.l_enc = l2_loss

        ##
        # Create and initialize networks.
        self.netg = NetG().cuda()
        self.netd = NetD().cuda()

        # Setup optimizer
        self.optimizer_d = optim.RMSprop(self.netd.parameters(), lr=self.lr)
        self.optimizer_g = optim.Adam(self.netg.parameters(), lr=self.lr)

        ##
        self.weight_path = os.path.join(self.outf, self.opt.experiment_name,
                                        'train', 'weights')
        if os.path.exists(self.weight_path) and len(
                os.listdir(self.weight_path)) == 2:
            print("Loading pre-trained networks...\n")
            self.netg.load_state_dict(
                torch.load(os.path.join(self.weight_path,
                                        'netG.pth'))['state_dict'])
            self.netd.load_state_dict(
                torch.load(os.path.join(self.weight_path,
                                        'netD.pth'))['state_dict'])

            self.optimizer_g.load_state_dict(
                torch.load(os.path.join(self.weight_path,
                                        'netG.pth'))['optimizer'])
            self.optimizer_d.load_state_dict(
                torch.load(os.path.join(self.weight_path,
                                        'netD.pth'))['optimizer'])

            self.start_iter = torch.load(
                os.path.join(self.weight_path, 'netG.pth'))['epoch']

    ##
    def start(self):
        """ Train the model
        """

        ##
        # TRAIN
        # self.total_steps = 0
        best_criterion = -1  #float('inf')
        best_auc = -1

        # Train for niter epochs.
        # print(">> Training model %s." % self.name)
        for self.epoch in range(self.start_iter, self.niter):
            # Train for one epoch
            mean_wass = self.train()

            (auc, res, best_rec, best_threshold), res_total = self.test()
            message = ''
            # message += 'criterion: (%.3f+%.3f)/2=%.3f ' % (best_rec[0], best_rec[1], res)
            # message += 'best threshold: %.3f ' % best_threshold
            message += 'Wasserstein Distance:%.3d ' % mean_wass
            message += 'AUC: %.3f ' % auc

            print(message)

            torch.save(
                {
                    'epoch': self.epoch + 1,
                    'state_dict': self.netg.state_dict(),
                    'optimizer': self.optimizer_g.state_dict()
                }, '%s/netG.pth' % (self.weight_dir))

            torch.save(
                {
                    'epoch': self.epoch + 1,
                    'state_dict': self.netd.state_dict(),
                    'optimizer': self.optimizer_d.state_dict()
                }, '%s/netD.pth' % (self.weight_dir))

            if auc > best_auc:
                best_auc = auc
                new_message = "******** New optimal found, saving state ********"
                message = message + '\n' + new_message
                print(new_message)

                for img in os.listdir(self.best_test_dir):
                    os.remove(os.path.join(self.best_test_dir, img))

                for img in os.listdir(self.test_img_dir):
                    shutil.copyfile(os.path.join(self.test_img_dir, img),
                                    os.path.join(self.best_test_dir, img))

                shutil.copyfile('%s/netG.pth' % (self.weight_dir),
                                '%s/netg_best.pth' % (self.weight_dir))

            log_name = os.path.join(self.outf, self.opt.experiment_name,
                                    'loss_log.txt')
            message = 'Epoch%3d:' % self.epoch + ' ' + message
            with open(log_name, "a") as log_file:
                if self.epoch == 0:
                    log_file.write('\n\n')
                log_file.write('%s\n' % message)

        print(">> Training %s Done..." % self.opt.experiment_name)

    ##
    def train(self):
        """ Train the model for one epoch.
        """
        print("\n>>> Epoch %d/%d, Running " % (self.epoch + 1, self.niter) +
              self.opt.experiment_name)

        self.netg.train()
        self.netd.train()
        # for p in self.netg.parameters(): p.requires_grad = True

        mean_wass = 0

        tk0 = tqdm(self.dataloader['train'],
                   total=len(self.dataloader['train']))
        for i, itr in enumerate(tk0):
            input, _ = itr
            input = input.cuda()
            wasserstein_d = None
            # if self.algorithm == 'wgan':
            # train NetD
            for _ in range(self.netd_niter):
                # for p in self.netd.parameters(): p.requires_grad = True
                self.optimizer_d.zero_grad()

                # forward_g
                latent_i = torch.rand(self.batchsize['train'], 64, 1, 1).cuda()
                fake = self.netg(latent_i)
                # forward_d
                _, pred_real = self.netd(input)
                _, pred_fake = self.netd(fake)  # .detach() TODO

                # Backward-pass
                wasserstein_d = (pred_fake.mean() - pred_real.mean()) * 1
                wasserstein_d.backward()
                self.optimizer_d.step()

                for p in self.netd.parameters():
                    p.data.clamp_(-0.01, 0.01)  #<<<<<<<

            # train netg
            # for p in self.netd.parameters(): p.requires_grad = False
            self.optimizer_g.zero_grad()
            noise = torch.rand(self.batchsize['train'], 64, 1, 1).cuda()
            fake = self.netg(noise)
            _, pred_fake = self.netd(fake)
            err_g_d = -pred_fake.mean()  # negative

            err_g_d.backward()
            self.optimizer_g.step()

            errors = {
                'loss_netD': wasserstein_d.item(),
                'loss_netG': round(err_g_d.item(), 3),
            }

            mean_wass += wasserstein_d.item()
            tk0.set_postfix(errors)

            if i % 50 == 0:
                img_dir = os.path.join(self.outf, self.opt.experiment_name,
                                       'train', 'images')
                if not os.path.isdir(img_dir):
                    os.makedirs(img_dir)
                self.save_image_cv2(input.data, '%s/reals.png' % img_dir)
                self.save_image_cv2(fake.data,
                                    '%s/fakes%03d.png' % (img_dir, i))

        mean_wass /= len(self.dataloader['train'])
        return mean_wass

    ##
    def test(self):
        """ Test AnoGAN model.

        Args:
            dataloader ([type]): Dataloader for the test set

        Raises:
            IOError: Model weights not found.
        """
        self.netg.eval()
        self.netd.eval()
        # for p in self.netg.parameters(): p.requires_grad = False
        # for p in self.netd.parameters(): p.requires_grad = False

        for img in os.listdir(self.test_img_dir):
            os.remove(os.path.join(self.test_img_dir, img))

        self.phase = 'test'
        meter = Meter_AnoGAN()
        tk1 = tqdm(self.dataloader['test'], total=len(self.dataloader['test']))
        for i, itr in enumerate(tk1):
            input, target = itr
            input = input.cuda()

            latent_i = torch.rand(self.batchsize['test'], 64, 1, 1).cuda()
            latent_i.requires_grad = True

            optimizer_latent = optim.Adam([latent_i], lr=self.lr)
            test_loss = None
            for _ in range(self.test_iter):
                optimizer_latent.zero_grad()
                fake = self.netg(latent_i)
                residual_loss = self.l_con(input, fake)
                latent_o, _ = self.netd(fake)
                discrimination_loss = self.l_enc(latent_i, latent_o)
                alpha = 0.1
                test_loss = (
                    1 - alpha) * residual_loss + alpha * discrimination_loss
                test_loss.backward()
                optimizer_latent.step()

            abnormal_score = test_loss
            meter.update(abnormal_score, target)  #<<<TODO

            # Save test images.
            combine = torch.cat([input.cpu(), fake.cpu()], dim=0)
            self.save_image_cv2(combine,
                                '%s/%05d.jpg' % (self.test_img_dir, i + 1))

        criterion, res_total = meter.get_metrics()

        # rename images
        for i, res in enumerate(res_total):
            os.rename('%s/%05d.jpg' % (self.test_img_dir, i + 1),
                      '%s/%05d_%s.jpg' % (self.test_img_dir, i + 1, res))

        return criterion, res_total

    @staticmethod
    def save_image_cv2(tensor, filename):
        # return
        from torchvision.utils import make_grid
        # tensor = (tensor + 1) / 2
        grid = make_grid(tensor, 8, 2, 0, False, None, False)
        ndarray = grid.mul_(255).clamp_(0, 255).permute(1, 2, 0).to(
            'cpu', torch.uint8).numpy()
        cv2.imwrite(filename, ndarray)
Esempio n. 2
0
def train(**kwargs):
    for k_, v_ in kwargs.items():
        setattr(opt, k_, v_)

    device = t.device("cuda") if opt.gpu else t.device("cpu")

    # 数据处理,输出规范为-1~1
    transforms = tv.transforms.Compose([
        tv.transforms.Resize(opt.image_size),
        tv.transforms.CenterCrop(opt.image_size),
        tv.transforms.ToTensor(),
        tv.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    dataset = tv.datasets.ImageFolder(opt.data_path, transform=transforms)
    dataloader = t.utils.data.DataLoader(dataset,
                                         batch_size=opt.batch_size,
                                         shuffle=True,
                                         num_workers=opt.num_workers,
                                         drop_last=True)

    # 网络
    netg, netd = NetG(opt), NetD(opt)
    map_location = lambda storage, loc: storage
    if opt.netd_path:
        netd.load_state_dict(t.load(opt.netd_path, map_location=map_location))
    if opt.netg_path:
        netg.load_state_dict(t.load(opt.netg_path, map_location=map_location))
    netd.to(device)
    netg.to(device)

    # 定义优化器和损失
    optimizer_g = t.optim.Adam(netg.parameters(),
                               opt.lr1,
                               betas=(opt.beta1, 0.999))
    optimizer_d = t.optim.Adam(netd.parameters(),
                               opt.lr2,
                               betas=(opt.beta1, 0.999))
    criterion = t.nn.BCELoss()

    # 真图片label为1,假图片label为0, noise为生成网络的输入
    true_labels = t.ones(opt.batch_size).to(device)
    fake_labels = t.zeros(opt.batch_size).to(device)
    fix_noises = t.randn(opt.batch_size, opt.nz, 1, 1).to(device)
    noises = t.randn(opt.batch_size, opt.nz, 1, 1).to(device)

    # 用来结果的均值和标准差
    errord_meter = AverageValueMeter()
    errorg_meter = AverageValueMeter()

    epochs = range(opt.max_epoch)
    for epoch in iter(epochs):
        for ii, (img, _) in tqdm.tqdm(enumerate(dataloader)):
            real_img = img.to(device)

            if ii % opt.d_every == 0:
                # 训练判别器
                optimizer_d.zero_grad()
                ## 尽可能把真图片判别为正
                output = netd(real_img)
                error_d_real = criterion(output, true_labels)
                error_d_real.backward()

                ## 尽可能把假图片判断为错误
                noises.data.copy_(t.randn(opt.batch_size, opt.nz, 1, 1))
                # 使用detach来关闭G求梯度,加速训练
                fake_img = netg(noises).detach()
                output = netd(fake_img)
                error_d_fake = criterion(output, fake_labels)
                error_d_fake.backward()
                optimizer_d.step()

                error_d = error_d_fake + error_d_real

                errord_meter.add(error_d.item())

            if ii % opt.g_every == 0:
                # 训练生成器
                optimizer_g.zero_grad()
                noises.data.copy_(t.randn(opt.batch_size, opt.nz, 1, 1))
                fake_img = netg(noises)
                output = netd(fake_img)
                # 尽可能把假的图片也判别为1
                error_g = criterion(output, true_labels)
                error_g.backward()
                optimizer_g.step()
                errorg_meter.add(error_g.item())

            # 可视化

        # 保存模型、图片
        if (epoch + 1) % opt.save_every == 0:
            fix_fake_imgs = netg(fix_noises)
            tv.utils.save_image(fix_fake_imgs.data[:64],
                                "%s%s.png" % (opt.save_path, epoch),
                                normalize=True,
                                range=(-1, 1))
            t.save(netd.state_dict(), r"./checkpoints/netd_%s.pth" % epoch)
            t.save(netg.state_dict(), r"./checkpoints/netg_%s.pth" % epoch)
            errord_meter.reset()
            errorg_meter.reset()
Esempio n. 3
0
def train():
    dataset = torchvision.datasets.ImageFolder(conf.data_path,
                                               transform=transforms)
    dataloader = torch.utils.data.DataLoader(dataset=dataset,
                                             batch_size=conf.batch_size,
                                             shuffle=True,
                                             drop_last=True)
    netG = NetG(conf.ngf, conf.nz)
    netD = NetD(conf.ndf)

    criterion = nn.BCELoss()
    optimizerG = torch.optim.Adam(netG.parameters(),
                                  lr=conf.lr,
                                  betas=(conf.beta1, 0.999))
    optimizerD = torch.optim.Adam(netD.parameters(),
                                  lr=conf.lr,
                                  betas=(conf.beta1, 0.999))

    label = torch.FloatTensor(conf.batch_size)
    real_label = 1
    fake_label = 0

    for epoch in range(1, conf.epoch + 1):
        for i, (imgs, _) in enumerate(dataloader):
            #step1:固定G,训练D
            optimizerD.zero_grad()
            output = netD(imgs)  #让D尽可能把真图片识别为1
            label.data.fill_(real_label)
            errD_real = criterion(output, label)
            errD_real.backward()
            #让D尽可能把假图判别为0
            label.data.fill_(fake_label)
            noise = torch.randn(conf.batch_size, conf.nz, 1, 1)
            fake = netG(noise)  #生成假图
            output = netD(fake.detach())  #避免梯度传到G,因为G不用更新
            errD_fake = criterion(output, label)
            errD_fake.backward()
            errD = errD_fake + errD_real
            optimizerD.step()

            #step2:固定判别器D,训练生成器G
            optimizerG.zero_grad()
            label.data.fill_(real_label)  #让D尽可能把G生成的假图判别为1
            output = netD(fake)
            errG = criterion(output, label)
            errG.backward()
            optimizerG.step()

            if i % 4 == 0:
                rate = i * 1.0 / len(dataloader) * 100
                logger.info(
                    "epoch={}, i={}, N={}, rate={}%, errD={}, errG={}".format(
                        epoch, i, len(dataloader), rate, errD, errG))
        #end-for
        save_image(fake.data,
                   '%s/fake_samples_epoch_%03d.png' %
                   (conf.checkpoints, epoch),
                   normalize=True)
        torch.save(netG.state_dict(),
                   '%s/netG_%03d.pth' % (conf.checkpoints, epoch))
        torch.save(netD.state_dict(),
                   '%s/netD_%03d.pth' % (conf.checkpoints, epoch))
Esempio n. 4
0
def train(**kwargs):
    for k_, v_ in kwargs.items():
        setattr(opt, k_, v_)
    device = t.device('cuda') if opt.gpu else t.device('cpu')
    # 可视化
    if opt.vis:
        from visualize import Visualizer
        vis = Visualizer(opt.env)

    # 数据
    transforms = tv.transforms.Compose([
        tv.transforms.Resize(opt.image_size),
        tv.transforms.CenterCrop(opt.image_size),
        tv.transforms.ToTensor(),
        tv.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    dataset = tv.datasets.ImageFolder(opt.data_path, transforms)
    dataloader = t.utils.data.DataLoader(dataset,
                                         batch_size=opt.batch_size,
                                         shuffle=True,
                                         num_workers=opt.num_workers,
                                         drop_last=True)

    netg, netd = NetG(opt), NetD(opt)
    if opt.netd_path:
        netd.load_state_dict(
            t.load(opt.netd_path, map_location=t.device('cpu')))
    if opt.netg_path:
        netg.load_state_dict(
            t.load(opt.netg_path, map_location=t.device('cpu')))
    netd.to(device)
    netg.to(device)

    # 定义优化器和损失
    optimizer_g = t.optim.Adam(netg.parameters(),
                               opt.lr1,
                               betas=(opt.beta1, 0.999))
    optimizer_d = t.optim.Adam(netd.parameters(),
                               opt.lr1,
                               betas=(opt.beta1, 0.999))
    criterion = t.nn.BCELoss().to(device)

    # 真图片label为1,假图片label为0
    # noise为生成网络的输入
    true_labels = t.ones(opt.batch_size).to(device)
    fake_labels = t.zeros(opt.batch_size).to(device)
    fix_noises = t.randn(opt.batch_size, opt.nz, 1, 1).to(device)
    noises = t.randn(opt.batch_size, opt.nz, 1, 1).to(device)

    errord = 0
    errorg = 0

    epochs = range(opt.max_epoch)
    for epoch in epochs:
        for ii, (img, _) in tqdm(enumerate(dataloader)):
            real_img = img.to(device)

            if (ii + 1) % opt.d_every == 0:
                # 训练判别器
                optimizer_d.zero_grad()
                # 把真图片判断为正确
                output = netd(real_img)
                error_d_real = criterion(output, true_labels)
                error_d_real.backward()

                # 把假图片(netg通过噪声生成的图片)判断为错误
                noises.data.copy_(t.randn(opt.batch_size, opt.nz, 1, 1))
                fake_img = netg(noises).detach()
                output = netd(fake_img)
                error_d_fake = criterion(output, fake_labels)
                error_d_fake.backward()
                optimizer_d.step()

                errord += (error_d_fake + error_d_real).item()

            if (ii + 1) % opt.g_every == 0:
                # 训练生成器
                optimizer_g.zero_grad()
                noises.data.copy_(t.randn(opt.batch_size, opt.nz, 1, 1))
                fake_img = netg(noises)
                output = netd(fake_img)
                error_g = criterion(output, true_labels)
                error_g.backward()
                optimizer_g.step()
                errorg += error_g.item()

            if opt.vis and (ii + 1) % opt.plot_every == 0:
                fix_fake_imgs = netg(fix_noises)
                vis.images(fix_fake_imgs.detach().cpu().numpy()[:64] * 0.5 +
                           0.5,
                           win='fixfake')
                vis.images(real_img.data.cpu().numpy()[:64] * 0.5 + 0.5,
                           win='real')
                vis.plot('errord', errord / (opt.plot_every))
                vis.plot('errorg', errorg / (opt.plot_every))
                errord = 0
                errorg = 0

            if (epoch + 1) % opt.save_every == 0:
                tv.utils.save_image(fix_fake_imgs.data[:64],
                                    '%s%s.png' % (opt.save_path, epoch),
                                    normalize=True,
                                    range=(-1, 1))
                t.save(netd.state_dict(),
                       'checkpoints/netd_%s.pth' % (epoch + 1))
                t.save(netg.state_dict(),
                       'checkpoints/netg_%s.pth' % (epoch + 1))
Esempio n. 5
0
def train(**kwargs):
    for k_, v_ in kwargs.items():
        setattr(opt, k_, v_)

    device=t.device('cuda') if opt.gpu else t.device('cpu')
    if opt.vis:
        from visualize import Visualizer
        vis = Visualizer(opt.env)

    # 数据
    transforms = tv.transforms.Compose([
        tv.transforms.Resize(opt.image_size),
        tv.transforms.CenterCrop(opt.image_size),
        tv.transforms.ToTensor(),
        tv.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    dataset = tv.datasets.ImageFolder(opt.data_path, transform=transforms)
    dataloader = t.utils.data.DataLoader(dataset,
                                         batch_size=opt.batch_size,
                                         shuffle=True,
                                         num_workers=opt.num_workers,
                                         drop_last=True
                                         )

    # 网络
    netg, netd = NetG(opt), NetD(opt)
    map_location = lambda storage, loc: storage
    if opt.netd_path:
        netd.load_state_dict(t.load(opt.netd_path, map_location=map_location))
    if opt.netg_path:
        netg.load_state_dict(t.load(opt.netg_path, map_location=map_location))
    netd.to(device)
    netg.to(device)


    # 定义优化器和损失
    optimizer_g = t.optim.Adam(netg.parameters(), opt.lr1, betas=(opt.beta1, 0.999))
    optimizer_d = t.optim.Adam(netd.parameters(), opt.lr2, betas=(opt.beta1, 0.999))
    criterion = t.nn.BCELoss().to(device)

    # 真图片label为1,假图片label为0
    # noises为生成网络的输入
    true_labels = t.ones(opt.batch_size).to(device)
    fake_labels = t.zeros(opt.batch_size).to(device)
    fix_noises = t.randn(opt.batch_size, opt.nz, 1, 1).to(device)
    noises = t.randn(opt.batch_size, opt.nz, 1, 1).to(device)

    errord_meter = AverageValueMeter()
    errorg_meter = AverageValueMeter()


    epochs = range(opt.max_epoch)
    for epoch in iter(epochs):
        for ii, (img, _) in tqdm.tqdm(enumerate(dataloader)):
            real_img = img.to(device)

            if ii % opt.d_every == 0:
                # 训练判别器
                optimizer_d.zero_grad()
                ## 尽可能的把真图片判别为正确
                output = netd(real_img)
                error_d_real = criterion(output, true_labels)
                error_d_real.backward()

                ## 尽可能把假图片判别为错误
                noises.data.copy_(t.randn(opt.batch_size, opt.nz, 1, 1))
                fake_img = netg(noises).detach()  # 根据噪声生成假图
                output = netd(fake_img)
                error_d_fake = criterion(output, fake_labels)
                error_d_fake.backward()
                optimizer_d.step()

                error_d = error_d_fake + error_d_real

                errord_meter.add(error_d.item())

            if ii % opt.g_every == 0:
                # 训练生成器
                optimizer_g.zero_grad()
                noises.data.copy_(t.randn(opt.batch_size, opt.nz, 1, 1))
                fake_img = netg(noises)
                output = netd(fake_img)
                error_g = criterion(output, true_labels)
                error_g.backward()
                optimizer_g.step()
                errorg_meter.add(error_g.item())

            if opt.vis and ii % opt.plot_every == opt.plot_every - 1:
                ## 可视化
                if os.path.exists(opt.debug_file):
                    ipdb.set_trace()
                fix_fake_imgs = netg(fix_noises)
                vis.images(fix_fake_imgs.detach().cpu().numpy()[:64] * 0.5 + 0.5, win='fixfake')
                vis.images(real_img.data.cpu().numpy()[:64] * 0.5 + 0.5, win='real')
                vis.plot('errord', errord_meter.value()[0])
                vis.plot('errorg', errorg_meter.value()[0])

        if (epoch+1) % opt.save_every == 0:
            # 保存模型、图片
            tv.utils.save_image(fix_fake_imgs.data[:64], '%s/%s.png' % (opt.save_path, epoch), normalize=True,
                                range=(-1, 1))
            t.save(netd.state_dict(), 'checkpoints/netd_%s.pth' % epoch)
            t.save(netg.state_dict(), 'checkpoints/netg_%s.pth' % epoch)
            errord_meter.reset()
            errorg_meter.reset()
Esempio n. 6
0
def train(**kwargs):
    # 读取参数赋值
    for k_, v_ in kwargs.items():
        setattr(opt, k_, v_)
    # 可视化
    if opt.vis:
        from visualize import Visualizer
        vis = Visualizer(opt.env)
    # 对图片进行操作
    transforms = tv.transforms.Compose([
        tv.transforms.Scale(opt.image_size),
        tv.transforms.CenterCrop(opt.image_size),
        tv.transforms.ToTensor(),
        # 均值方差
        tv.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])
    # ImageFolder 使用pytorch原生的方法读取图片,并进行操作  封装数据集
    dataset = tv.datasets.ImageFolder(opt.data_path, transform=transforms)
    #数据加载器
    dataloader = t.utils.data.DataLoader(dataset,
                                         batch_size=opt.batch_size,
                                         shuffle=True,
                                         num_workers=opt.num_workers,
                                         drop_last=True)

    # 定义网络
    netg, netd = NetG(opt), NetD(opt)
    # 把map内容加载到CPU中
    map_location = lambda storage, loc: storage
    # 将预训练的模型都先加载到cpu上
    if opt.netd_path:
        netd.load_state_dict(t.load(opt.netd_path, map_location=map_location))
    if opt.netg_path:
        netg.load_state_dict(t.load(opt.netg_path, map_location=map_location))

    # 定义优化器和损失
    optimizer_g = t.optim.Adam(netg.parameters(),
                               opt.lr1,
                               betas=(opt.beta1, 0.999))
    optimizer_d = t.optim.Adam(netd.parameters(),
                               opt.lr2,
                               betas=(opt.beta1, 0.999))
    # BinaryCrossEntropy二分类交叉熵,常用于二分类问题,当然也可以用于多分类问题
    criterion = t.nn.BCELoss()

    # 真图片label为1,假图片label为0
    # noises为生成网络的输入
    true_labels = Variable(t.ones(opt.batch_size))
    fake_labels = Variable(t.zeros(opt.batch_size))
    # fix_noises是固定值,用来查看每个epoch的变化效果
    fix_noises = Variable(t.randn(opt.batch_size, opt.nz, 1, 1))
    noises = Variable(t.randn(opt.batch_size, opt.nz, 1, 1))
    # AverageValueMeter统计任意添加的变量的方差和均值  可视化的仪表盘
    errord_meter = AverageValueMeter()
    errorg_meter = AverageValueMeter()

    if opt.gpu:
        # 网络转移到GPU
        netd.cuda()
        netg.cuda()
        # 损失函数转移到GPU
        criterion.cuda()
        # 标签转移到GPU
        true_labels, fake_labels = true_labels.cuda(), fake_labels.cuda()
        # 输入噪声转移到GPU
        fix_noises, noises = fix_noises.cuda(), noises.cuda()

    epochs = range(opt.max_epoch)
    for epoch in iter(epochs):

        for ii, (img, _) in tqdm.tqdm(enumerate(dataloader)):
            real_img = Variable(img)
            if opt.gpu:
                real_img = real_img.cuda()
            # 每d_every个batch训练判别器
            if ii % opt.d_every == 0:
                # 训练判别器
                optimizer_d.zero_grad()
                ## 尽可能的把真图片判别为正确
                #一个batchd的真照片判定为1 并反向传播
                output = netd(real_img)
                error_d_real = criterion(output, true_labels)
                #反向传播
                error_d_real.backward()

                ## 尽可能把假图片判别为错误
                # 一个batchd的假照片判定为0 并反向传播
                noises.data.copy_(t.randn(opt.batch_size, opt.nz, 1, 1))
                fake_img = netg(noises).detach()  # 根据噪声生成假图
                output = netd(fake_img)
                error_d_fake = criterion(output, fake_labels)
                error_d_fake.backward()
                #更新可学习参数
                optimizer_d.step()
                # 总误差=识别真实图片误差+假图片误差
                error_d = error_d_fake + error_d_real
                # 将总误差加入仪表板用于可视化显示
                errord_meter.add(error_d.data[0])
            # 每g_every个batch训练生成器
            if ii % opt.g_every == 0:
                # 训练生成器
                optimizer_g.zero_grad()
                noises.data.copy_(t.randn(opt.batch_size, opt.nz, 1, 1))
                # 生成器:噪声生成假图片
                fake_img = netg(noises)
                # 判别器:假图片判别份数
                output = netd(fake_img)
                # 尽量让假图片的份数与真标签接近,让判别器分不出来
                error_g = criterion(output, true_labels)
                error_g.backward()
                # 更新参数
                optimizer_g.step()
                # 将误差加入仪表板用于可视化显示
                errorg_meter.add(error_g.data[0])

            if opt.vis and ii % opt.plot_every == opt.plot_every - 1:
                ## 可视化
                # 进入debug模式
                if os.path.exists(opt.debug_file):
                    ipdb.set_trace()
                # 固定噪声生成假图片
                fix_fake_imgs = netg(fix_noises)
                # 可视化 固定噪声产生的假图片
                vis.images(fix_fake_imgs.data.cpu().numpy()[:64] * 0.5 + 0.5,
                           win='fixfake')
                # 可视化一张真图片。作为对比
                vis.images(real_img.data.cpu().numpy()[:64] * 0.5 + 0.5,
                           win='real')
                # 可视化仪表盘  判别器误差  生成器误差
                vis.plot('errord', errord_meter.value()[0])
                vis.plot('errorg', errorg_meter.value()[0])
        # 每decay_every个epoch之后保存一次模型
        if epoch % opt.decay_every == 0:
            # 保存模型、图片
            tv.utils.save_image(fix_fake_imgs.data[:64],
                                '%s/%s.png' % (opt.save_path, epoch),
                                normalize=True,
                                range=(-1, 1))
            # 保存判别器  生成器
            t.save(netd.state_dict(), 'checkpoints/netd_%s.pth' % epoch)
            t.save(netg.state_dict(), 'checkpoints/netg_%s.pth' % epoch)
            # 清空误差仪表盘
            errord_meter.reset()
            errorg_meter.reset()
            # 重置优化器参数为刚开始的参数
            optimizer_g = t.optim.Adam(netg.parameters(),
                                       opt.lr1,
                                       betas=(opt.beta1, 0.999))
            optimizer_d = t.optim.Adam(netd.parameters(),
                                       opt.lr2,
                                       betas=(opt.beta1, 0.999))
Esempio n. 7
0
         fake = netg(img)
         netg.train()
     fake = (fake + 1) / 2 * 255
     real = (ass_label + 1) / 2 * 255
     ori = (img + 1) / 2 * 255
     al = th.cat((fake, real, ori), 2)
     display = make_grid(al, 20).cpu().numpy()
     if win1 is None:
         win1 = vis.image(display,
                          opts=dict(title="train", caption='train'))
     else:
         vis.image(display, win=win1)
 if iteration % 500 == 0:
     state = {
         'netA': neta.state_dict(),
         'netG': netg.state_dict(),
         'netD': netd.state_dict()
     }
     th.save(state, './snapshot_%d.t7' % iteration)
     print('iter = {}, ErrG = {}, ErrA = {}, ErrD = {}'.format(
         iteration, lossG/2, lossA/3, lossD/3
     ))
 if iteration % 20 == 0:
     if win is None:
         win = vis.line(X=np.array([[iteration, iteration,
                                     iteration]]),
                        Y=np.array([[lossG/2, lossA/3, lossD/3]]),
                        opts=dict(
                            title='GaitGAN',
                            ylabel='loss',
                            xlabel='iterations',
Esempio n. 8
0
        noise = noise.to(device)
        fake = netG(noise)  # 生成假图
        output = netD(fake.detach())  #避免梯度传到G,因为G不用更新
        errD_fake = criterion(output, label)
        errD_fake.backward()
        errD = errD_fake + errD_real
        optimizerD.step()

        # 固定鉴别器D,训练生成器G
        optimizerG.zero_grad()
        # 让D尽可能把G生成的假图判别为1
        label.data.fill_(real_label)
        label = label.to(device)
        output = netD(fake)
        errG = criterion(output, label)
        errG.backward()
        optimizerG.step()

        print('[%d/%d][%d/%d] Loss_D: %.3f Loss_G %.3f' %
              (epoch, opt.epoch, i, len(dataloader), errD.item(), errG.item()))

    # vutils.save_image(fake.data,
    #                   '%s/fake_samples_epoch_%03d.png' % (opt.outf, epoch),
    #                   normalize=True)
    # torch.save(netG.state_dict(), '%s/netG_%03d.pth' % (opt.outf, epoch))
    # torch.save(netD.state_dict(), '%s/netD_%03d.pth' % (opt.outf, epoch))

    vutils.save_image(fake.data, 'imgs/fake_samples.png', normalize=True)
    torch.save(netG.state_dict(), 'imgs/netG.pth')
    torch.save(netD.state_dict(), 'imgs/netD.pth')
Esempio n. 9
0
            errD_real = netD(realData)
            errD_real = errD_real.mean()
            errD_real.backward(one)
            # train with fake
            z.data.resize_(batchSize_now, nz, 1, 1).normal_()
            fakeData = netG(z)
            # pdb.set_trace()
            errD_fake = netD(fakeData.detach())
            errD_fake = errD_fake.mean()
            errD_fake.backward(mone)
            optimizerD.step()
            id += 1
        ############################
        # (2) Update G network
        ###########################
        netG.zero_grad()
        errG = netD(fakeData)
        errG = errG.mean()
        errG.backward(one)
        optimizerG.step()
        ig += 1
        hhh = fakeData.data.cpu()
        hhh = hhh / 2 + 0.5
        vis.image(torchvision.utils.make_grid(hhh), win=win)
        print('epoch %d, batch %d, Dreal: %.4f, Dfake: %.4f, errG: %.4f' %
              (it, ib, errD_real.data[0], errD_fake.data[0], errG.data[0]))
    # do checkpointing
    hhh = netG(z).data.cpu()
    torch.save(netG.state_dict(), '%s/netG_epoch_%d.pth' % (checkRoot, it))
    torch.save(netD.state_dict(), '%s/netD_epoch_%d.pth' % (checkRoot, it))
Esempio n. 10
0
        errD_real.backward()
        # 让D尽可能把假图片判别为0
        label.data.fill_(fake_label)
        noise = torch.randn(opt.batchSize, opt.nz, 1, 1)
        noise = noise.to(device)
        fake = netG(noise)  # 生成假图
        output = netD(fake.detach())  # 避免梯度传到G,因为G不用更新
        errD_fake = criterion(output, label)
        errD_fake.backward()
        errD = errD_fake + errD_real
        optimizerD.step()

        # 固定鉴别器D,训练生成器G
        optimizerG.zero_grad()
        # 让D尽可能把G生成的假图判别为1
        label.data.fill_(real_label)
        label = label.to(device)
        output = netD(fake)
        errG = criterion(output, label)
        errG.backward()
        optimizerG.step()

        print('[%d/%d][%d/%d] Loss_D: %.3f Loss_G %.3f' %
              (epoch, opt.epoch, i, len(dataloader), errD.item(), errG.item()))

    vutils.save_image(fake.data,
                      '%s/fake_samples_epoch_%03d.png' % (opt.outf, epoch),
                      normalize=True)
    torch.save(netG.state_dict(), '%s/netG_%03d.pth' % (opt.outf, epoch))
    torch.save(netD.state_dict(), '%s/netD_%03d.pth' % (opt.outf, epoch))
Esempio n. 11
0
                   errG.item(), D_x, D_G_z1, D_G_z2))

        # 记录损失画图 Save Losses for plotting later
        G_losses.append(errG.item())
        D_losses.append(errD.item())

        # 观察生成器 Check how the generator is doing by saving G's output on fixed_noise
        if (iters % 500 == 0) or ((epoch == num_epochs - 1) and
                                  (i == len(dataloader) - 1)):
            with torch.no_grad():
                fake = netG(fixed_noise).detach().cpu()
            # 保存图片
            vutils.save_image(fake,
                              '%s/fake_samples_epoch_%03d.png' %
                              ('inm/', epoch),
                              normalize=True)
        iters += 1

    # 保存模型 do checkpointing
    torch.save(netG.state_dict(), '%s/netG_epoch_%d.pth' % ('models/', epoch))
    torch.save(netD.state_dict(), '%s/netD_epoch_%d.pth' % ('models/', epoch))

# 画损失图 Plot G_losses、D_losses
plt.figure(figsize=(10, 5))
plt.title("Generator and Discriminator Loss During Training")
plt.plot(G_losses, label="G")
plt.plot(D_losses, label="D")
plt.xlabel("iterations")
plt.ylabel("Loss")
plt.legend()
plt.show()
Esempio n. 12
0
            noise = noise.to(device)
            fake = netG(noise)  # Generate fake map
            output = netD(fake.detach())
            errD_fake = criterion(output, label)
            errD_fake.backward()
            errD = errD_fake + errD_real
            optimizerD.step()

            # Step 2: Fix discriminator D and train generator G
            optimizerG.zero_grad()
            label.data.fill_(real_label)
            label = label.to(device)
            output = netD(fake)
            errG = criterion(output, label)
            errG.backward()
            optimizerG.step()

            print('[%d/%d][%d/%d] Loss_D: %.3f Loss_G %.3f' %
                  (epoch, opt.epoch, i, len(dataloader), errD.item(),
                   errG.item()))

        vutils.save_image(fake.data,
                          '%s/fake_samples_epoch_%03d.png' %
                          (opt.output, epoch),
                          normalize=True)
        torch.save(netG.state_dict(),
                   '%s/netG_%03d.pth' % (opt.model_path, epoch))
        torch.save(netD.state_dict(),
                   '%s/netD_%03d.pth' % (opt.model_path, epoch))

    print("end training")
Esempio n. 13
0
def train(**kwargs):
    for k_, v_ in kwargs.items():
        setattr(opt, k_, v_)
    if opt.vis:
        from visualizer import Visualizer
        vis = Visualizer(opt.env)

    transforms = tv.transforms.Compose([
        tv.transforms.Scale(opt.image_size),
        tv.transforms.CenterCrop(opt.image_size),
        tv.transforms.ToTensor(),
        tv.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    dataset = tv.datasets.ImageFolder(opt.data_path, transform=transforms)
    dataloader = t.utils.data.DataLoader(dataset,
                                         batch_size=opt.batch_size,
                                         shuffle=True,
                                         num_workers=opt.num_workers,
                                         drop_last=True)

    netg, netd = NetG(opt), NetD(opt)
    map_location = lambda storage, loc: storage
    if opt.netd_path:
        netd.load_state_dict(t.load(opt.netd_path, map_location=map_location))
    if opt.netg_path:
        netg.load_state_dict(t.load(opt.netg_path, map_location=map_location))

    optimizer_g = t.optim.Adam(netg.parameters(),
                               opt.lr1,
                               betas=(opt.beta1, 0.999))
    optimizer_d = t.optim.Adam(netd.parameters(),
                               opt.lr2,
                               betas=(opt.beta1, 0.999))
    criterion = t.nn.BCELoss()

    true_labels = Variable(t.ones(opt.batch_size))
    fake_labels = Variable(t.zeros(opt.batch_size))
    fix_noises = Variable(t.randn(opt.batch_size, opt.nz, 1, 1))
    noises = Variable(t.randn(opt.batch_size, opt.nz, 1, 1))

    errord_meter = AverageValueMeter()
    errorg_meter = AverageValueMeter()

    if opt.gpu:
        netd.cuda()
        netg.cuda()
        criterion.cuda()
        true_labels, fake_labels = true_labels.cuda(), fake_labels.cuda()
        fix_noises, noises = fix_noises.cuda(), noises.cuda()

    epochs = range(opt.max_epoch)
    for epoch in iter(epochs):
        for ii, (img, _) in tqdm.tqdm(enumerate(dataloader)):
            real_img = Variable(img)
            if opt.gpu:
                real_img = real_img.cuda()
            if ii % opt.d_every == 0:
                optimizer_d.zero_grad()
                output = netd(real_img)
                error_d_real = criterion(output, true_labels)
                error_d_real.backward()

                noises.data.copy_(t.randn(opt.batch_size, opt.nz, 1, 1))
                fake_img = netg(noises).detach()
                output = netd(fake_img)
                error_d_fake = criterion(output, fake_labels)
                error_d_fake.backward()
                optimizer_d.step()

                error_d = error_d_fake + error_d_real

                error_meter.add(error_d.data[0])

            if ii % opt.g_every == 0:
                optimizer_g.zero_grad()
                noises.data.copy_(t.randn(opt.batch_size, opt.nz, 1, 1))
                fake_img = netg(noises)
                output = netd(fake_img).detach()
                error_g = criterion(output, true_labels)
                error_g.backward()
                optimizer_g.step()
                errorg_meter.add(error_g.data[0])

            if opt.vis and ii % opt.plot_every == opt.plot_every - 1:
                if os.path.exists(opt.debug_file):
                    ipdb.set_trace()
                fix_fake_imgs = netg(fix_noises)
                vis.images(fix_fake_imgs.data.cpu().numpy()[:64] * 0.5 + 0.5,
                           win='fixfake')
                vis.images(real_img.data.cpu().numpy()[:64] * 0.5 + 0.5,
                           win='real')
                vis.plot('errord', errord_meter.value()[0])
                vis.plot('errorg', errorg_meter.value()[0])

        if epoch % opt.decay_every == 0:
            tv.utils.save_image(fix_fake_imgs.data[:64],
                                '%s/%s.png' % (opt.save_path, epoch),
                                Normalize=True,
                                range=(-1, 1))
            t.save(netd.state_dict(), 'checkpoints/netd_%s.pth' % epoch)
            t.save(netg.state_dict(), 'checkpoints/netg_%s.pth' % epoch)
            errord_meter.reset()
            errorg_meter.reset()
Esempio n. 14
0
def train(**kwargs):
    '''
    训练函数
    :param kwargs: fire传进来的训练参数
    :return:
    '''
    opt.parse(kwargs)
    for k_,v_ in kwargs.items():
        setattr(opt,k_,v_)
    if opt.vis:
        vis = Visualizer(opt.env)

    #step1:数据预处理
    transforms = tv.transforms.Compose([
        tv.transforms.Resize(opt.image_size),
        tv.transforms.CenterCrop(opt.image_size),
        tv.transforms.ToTensor(),
        tv.transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))
    ])

    dataset = tv.datasets.ImageFolder(opt.data_path,transform=transforms)
    dataloader = t.utils.data.DataLoader(dataset,
                                        batch_size=opt.batch_size,
                                        shuffle=True,
                                        num_workers=opt.num_workers,
                                        drop_last=True)

    #step2: 定义网络
    netg,netd = NetG(opt),NetD(opt)
    map_location = lambda storage,loc:storage
    if opt.netd_path:
        netd.load_state_dict(t.load(opt.netd_path, map_location=map_location))
    if opt.netg_path:
        netg.load_state_dict(t.load(opt.netg_path, map_location=map_location))

    #定义优化器和损失函数
    optimizer_g = t.optim.Adam(netg.parameters(), opt.lrG, betas=(0.5, 0.999))
    optimizer_d = t.optim.Adam(netd.parameters(), opt.lrD, betas=(0.5, 0.999))
    criterion = t.nn.BCELoss()

    #真图片label为1,加图片label为0
    #noise为网络的输入
    true_labels = t.ones(opt.batch_size)
    fake_labels = t.zeros(opt.batch_size)
    fix_noises = t.randn(opt.batch_size,opt.nz,1,1)
    noises = t.randn(opt.batch_size,opt.nz,1,1)

    errord_meter = AverageValueMeter()
    errorg_meter = AverageValueMeter()

    if opt.gpu:
        device = t.device("cuda:0" if t.cuda.is_available() else "cpu")
        netd.to(device)
        netg.to(device)
        criterion.to(device)
        true_labels,fake_labels = true_labels.to(device),fake_labels.to(device)
        fix_noises,noises = fix_noises.to(device),noises.to(device)

    epochs = range(140)
    for epoch in iter(epochs):
        for ii,(img,_) in tqdm.tqdm(enumerate(dataloader),total=len(dataloader)):
            if opt.gpu:
                real_img = img.to(device)
            if ii%opt.d_every == 0: #每个batch训练一次鉴别器
                optimizer_d.zero_grad()
                output = netd(real_img) #判断真图片(使其尽可能大)
                error_d_real = criterion(output,true_labels)
                error_d_real.backward()

                ##尽可能把假图片判断为错误
                noises.data.copy_(t.randn(opt.batch_size,opt.nz,1,1))
                fake_img = netg(noises).detach() #根据噪声生成假图
                output = netd(fake_img)
                error_d_fake = criterion(output,fake_labels)
                error_d_fake.backward()

                optimizer_d.step()
                error_d = error_d_fake + error_d_real
                errord_meter.add(error_d.item())

            if ii%opt.g_every == 0: #每5个batch更新一次生成器
                #训练生成器
                optimizer_g.zero_grad()
                noises.data.copy_(t.randn(opt.batch_size, opt.nz, 1, 1))
                fake_img = netg(noises)
                output = netd(fake_img)
                error_g = criterion(output,true_labels)
                error_g.backward()
                optimizer_g.step()
                errord_meter.add(error_g.item())

            if opt.vis and ii%opt.plot_time == opt.plot_time - 1:
                ##可视化
                fix_fake_img = netg(fix_noises) #使用噪声生成图片
                vis.images(fix_fake_img.data.cpu().numpy()[:64]*0.5+0.5,win = 'fixfake')
                # vis.images(real_img.data.cpu().numpy()[:64]*0.5+0.5,win = 'real')
                vis.plot('errord', errord_meter.value()[0])
                vis.plot('errorg', errorg_meter.value()[0])

        if epoch%opt.decay_every == opt.decay_every-1:
            #保存模型,图片
            tv.utils.save_image(fix_fake_img.data[:64],'%s/new%s.png'%(opt.save_path,epoch),
                                normalize=True,range=(-1,1))
            t.save(netd.state_dict(), 'checkpoints/new_netd_%s.pth' % epoch)
            t.save(netg.state_dict(), 'checkpoints/new_netg_%s.pth' % epoch)
            errord_meter.reset()
            errorg_meter.reset()
            optimizer_g = t.optim.Adam(netg.parameters(), opt.lrG, betas=(0.5, 0.999))
            optimizer_d = t.optim.Adam(netd.parameters(), opt.lrD, betas=(0.5, 0.999))
Esempio n. 15
0
def main(args):
    # manualSeed to control the noise
    manualSeed = 100
    random.seed(manualSeed)
    np.random.seed(manualSeed)
    torch.manual_seed(manualSeed)

    with open(args.json_file, 'r') as f:
        dataset_json = json.load(f)

    # load rnn encoder
    text_encoder = RNN_ENCODER(dataset_json['n_words'], nhidden=dataset_json['text_embed_dim'])
    text_encoder_dir = args.rnn_encoder
    state_dict = torch.load(text_encoder_dir, map_location=lambda storage, loc: storage)
    text_encoder.load_state_dict(state_dict)

    # load netG
    state_dict = torch.load(args.model_path, map_location=torch.device('cpu'))
    # netG = NetG(int(dataset_json['n_channels']), int(dataset_json['cond_dim']))
    netG = NetG(64, int(dataset_json['cond_dim']))
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        name = k[7:]  # remove `module.`nvidia
        new_state_dict[name] = v
    model_dict = netG.state_dict()
    pretrained_dict = {k: v for k, v in new_state_dict.items() if k in model_dict}
    model_dict.update(pretrained_dict)
    netG.load_state_dict(model_dict)

    # use gpu or not, change model to evaluation mode
    if args.use_gpu:
        text_encoder.cuda()
        netG.cuda()
        caption_idx.cuda()
        caption_len.cuda()
        noise.cuda()

    text_encoder.eval()
    netG.eval()

    # generate noise
    num_noise = 100
    noise = torch.FloatTensor(num_noise, 100)

    # cub bird captions
    # caption = 'this small bird has a light yellow breast and brown wings'
    # caption = 'this small bird has a short beak a light gray breast a darker gray crown and black wing tips'
    # caption = 'this small bird has wings that are gray and has a white belly'
    # caption = 'this bird has a yellow throat belly abdomen and sides with lots of brown streaks on them'
    # caption = 'this little bird has a yellow belly and breast with a gray wing with white wingbars'
    # caption = 'this bird has a white belly and breast wit ha blue crown and nape'
    # caption = 'a bird with brown and black wings red crown and throat and the bill is short and pointed'
    # caption = 'this small bird has a yellow crown and a white belly'
    # caption = 'this bird has a blue crown with white throat and brown secondaries'
    # caption = 'this bird has wings that are black and has a white belly'
    # caption = 'a yellow bird has wings with dark stripes and small eyes'
    # caption = 'a black bird has wings with dark stripes and small eyes'
    # caption = 'a red bird has wings with dark stripes and small eyes'
    # caption = 'a white bird has wings with dark stripes and small eyes'
    # caption = 'a blue bird has wings with dark stripes and small eyes'
    # caption = 'a pink bird has wings with dark stripes and small eyes'
    # caption = 'this is a white and grey bird with black wings and a black stripe by its eyes'
    # caption = 'a small bird with an orange bill and grey crown and breast'
    # caption = 'a small bird with black gray and white wingbars'
    # caption = 'this bird is white and light orange in color with a black beak'
    # caption = 'a small sized bird that has tones of brown and a short pointed bill' # beak?

    # MS coco captions
    # caption = 'two men skiing down a snow covered mountain in the evening'
    # caption = 'a man walking down a grass covered mountain'
    # caption = 'a close up of a boat on a field under a sunset'
    # caption = 'a close up of a boat on a field with a clear sky'
    # caption = 'a herd of black and white cattle standing on a field'
    # caption = 'a herd of black and white sheep standing on a field'
    # caption = 'a herd of black and white dogs standing on a field'
    # caption = 'a herd of brown cattle standing on a field'
    # caption = 'a herd of black and white cattle standing in a river'
    # caption = 'some horses in a field of green grass with a sky in the background'
    # caption = 'some horses in a field of yellow grass with a sky in the background'
    caption = 'some horses in a field of green grass with a sunset in the background'

    # convert caption to index
    caption_idx, caption_len = get_caption_idx(dataset_json, caption)
    caption_idx = torch.LongTensor(caption_idx)
    caption_len = torch.LongTensor([caption_len])
    caption_idx = caption_idx.view(1, -1)
    caption_len = caption_len.view(-1)

    # use rnn encoder to get caption embedding
    hidden = text_encoder.init_hidden(1)
    words_embs, sent_emb = text_encoder(caption_idx, caption_len, hidden)

    # generate fake image
    noise.data.normal_(0, 1)
    sent_emb = sent_emb.repeat(num_noise, 1)
    words_embs = words_embs.repeat(num_noise, 1, 1)
    with torch.no_grad():
        fake_imgs, fusion_mask = netG(noise, sent_emb)

        # create path to save image, caption and mask
        cap_number = 10000
        main_path = 'result/mani/cap_%s_0_coco_ch64' % (str(cap_number))
        img_save_path = '%s/image' % main_path
        mask_save_path = '%s/mask_' % main_path
        mkdir_p(img_save_path)
        for i in range(7):
            mkdir_p(mask_save_path + str(i))

        # save caption as image
        ixtoword = {v: k for k, v in dataset_json['word2idx'].items()}
        cap_img = cap2img(ixtoword, caption_idx, caption_len)
        im = cap_img[0].data.cpu().numpy()
        im = (im + 1.0) * 127.5
        im = im.astype(np.uint8)
        im = np.transpose(im, (1, 2, 0))
        im = Image.fromarray(im)
        full_path = '%s/caption.png' % main_path
        im.save(full_path)

        # save generated images and masks
        for i in tqdm(range(num_noise)):
            full_path = '%s/image_%d.png' % (img_save_path, i)
            im = fake_imgs[i].data.cpu().numpy()
            im = (im + 1.0) * 127.5
            im = im.astype(np.uint8)
            im = np.transpose(im, (1, 2, 0))
            im = Image.fromarray(im)
            im.save(full_path)

            for j in range(7):
                full_path = '%s%1d/mask_%d.png' % (mask_save_path, j, i)
                im = fusion_mask[j][i][0].data.cpu().numpy()
                im = im * 255
                im = im.astype(np.uint8)
                im = Image.fromarray(im)
                im.save(full_path)
Esempio n. 16
0
def train():
    # change opt
    # for k_, v_ in kwargs.items():
    #     setattr(opt, k_, v_)

    device = torch.device('cuda') if torch.cuda.is_available else torch.device(
        'cpu')

    if opt.vis:
        from visualizer import Visualizer
        vis = Visualizer(opt.env)

    # rescale to -1~1
    transform = transforms.Compose([
        transforms.Resize(opt.image_size),
        transforms.CenterCrop(opt.image_size),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])
    dataset = datasets.ImageFolder(opt.data_path, transform=transform)

    dataloader = DataLoader(dataset,
                            batch_size=opt.batch_size,
                            shuffle=True,
                            num_workers=opt.num_workers,
                            drop_last=True)

    netd = NetD(opt)
    netg = NetG(opt)
    map_location = lambda storage, loc: storage
    if opt.netd_path:
        netd.load_state_dict(torch.load(opt.netd_path),
                             map_location=map_location)
    if opt.netg_path:
        netg.load_state_dict(torch.load(opt.netg_path),
                             map_location=map_location)

    if torch.cuda.is_available():
        netd.to(device)
        netg.to(device)

    # 定义优化器和损失
    optimizer_g = torch.optim.Adam(netg.parameters(),
                                   opt.lr1,
                                   betas=(opt.beta1, 0.999))
    optimizer_d = torch.optim.Adam(netd.parameters(),
                                   opt.lr2,
                                   betas=(opt.beta1, 0.999))

    criterion = torch.nn.BCELoss().to(device)

    # 真label为1, noises是输入噪声
    true_labels = Variable(torch.ones(opt.batch_size))
    fake_labels = Variable(torch.zeros(opt.batch_size))

    fix_noises = Variable(torch.randn(opt.batch_size, opt.nz, 1, 1))
    noises = Variable(torch.randn(opt.batch_size, opt.nz, 1, 1))

    errord_meter = AverageValueMeter()
    errorg_meter = AverageValueMeter()

    if torch.cuda.is_available():
        netd.cuda()
        netg.cuda()
        criterion.cuda()
        true_labels, fake_labels = true_labels.cuda(), fake_labels.cuda()
        fix_noises, noises = fix_noises.cuda(), noises.cuda()

    for epoch in range(opt.max_epoch):
        print("epoch:", epoch, end='\r')
        # sys.stdout.flush()
        for ii, (img, _) in enumerate(dataloader):
            real_img = Variable(img)
            if torch.cuda.is_available():
                real_img = real_img.cuda()

            # 训练判别器, real -> 1, fake -> 0
            if (ii + 1) % opt.d_every == 0:
                # real
                optimizer_d.zero_grad()
                output = netd(real_img)
                # print(output.shape, true_labels.shape)
                error_d_real = criterion(output, true_labels)
                error_d_real.backward()
                # fake
                noises.data.copy_(torch.randn(opt.batch_size, opt.nz, 1, 1))
                fake_img = netg(noises).detach()  # 随机噪声生成假图
                fake_output = netd(fake_img)
                error_d_fake = criterion(fake_output, fake_labels)
                error_d_fake.backward()
                # update optimizer
                optimizer_d.step()

                error_d = error_d_fake + error_d_real

                errord_meter.add(error_d.item())

            # 训练生成器, 让生成器得到的图片能够被判别器判别为真
            if (ii + 1) % opt.g_every == 0:
                optimizer_g.zero_grad()
                noises.data.copy_(torch.randn(opt.batch_size, opt.nz, 1, 1))
                fake_img = netg(noises)
                fake_output = netd(fake_img)
                error_g = criterion(fake_output, true_labels)
                error_g.backward()
                optimizer_g.step()

                errorg_meter.add(error_g.item())

            if opt.vis and ii % opt.plot_every == opt.plot_every - 1:
                # 进行可视化
                # if os.path.exists(opt.debug_file):
                #     import ipdb
                #     ipdb.set_trace()

                fix_fake_img = netg(fix_noises)
                vis.images(
                    fix_fake_img.detach().cpu().numpy()[:opt.batch_size] * 0.5
                    + 0.5,
                    win='fixfake')
                vis.images(real_img.data.cpu().numpy()[:opt.batch_size] * 0.5 +
                           0.5,
                           win='real')
                vis.plot('errord', errord_meter.value()[0])
                vis.plot('errorg', errorg_meter.value()[0])

        if (epoch + 1) % opt.save_every == 0:
            # 保存模型、图片
            tv.utils.save_image(fix_fake_img.data[:opt.batch_size],
                                '%s/%s.png' % (opt.save_path, epoch),
                                normalize=True,
                                range=(-1, 1))
            torch.save(netd.state_dict(), 'checkpoints/netd_%s.pth' % epoch)
            torch.save(netg.state_dict(), 'checkpoints/netg_%s.pth' % epoch)
            errord_meter.reset()
            errorg_meter.reset()
Esempio n. 17
0
def train(**kwargs):
    for k_, v_ in kwargs.items():
        setattr(opt, k_, v_)

    device = t.device('cuda') if opt.gpu else t.device('cpu')
    # if opt.vis:
    #     from visualize import Visualizer
    #     vis = Visualizer(opt.env)

    # 数据
    transforms = tv.transforms.Compose([
        tv.transforms.Resize(opt.image_size),
        tv.transforms.CenterCrop(opt.image_size),
        tv.transforms.ToTensor(),
        tv.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    dataset = tv.datasets.ImageFolder(root=opt.data_path, transform=transforms)
    dataloader = t.utils.data.DataLoader(dataset,
                                         batch_size=opt.batch_size,
                                         shuffle=True,
                                         num_workers=opt.num_workers,
                                         drop_last=True)

    # 网络
    netg, netd = NetG(opt), NetD(opt)
    map_location = lambda storage, loc: storage
    if opt.netd_path:
        netd.load_state_dict(t.load(opt.netd_path, map_location=map_location))
    if opt.netg_path:
        netg.load_state_dict(t.load(opt.netg_path, map_location=map_location))
    netd.to(device)
    netg.to(device)

    # 定义优化器和损失
    optimizer_g = t.optim.Adam(netg.parameters(),
                               opt.lr1,
                               betas=(opt.beta1, 0.999))
    optimizer_d = t.optim.Adam(netd.parameters(),
                               opt.lr2,
                               betas=(opt.beta1, 0.999))
    criterion = t.nn.BCELoss().to(device)

    # 真图片label为1,假图片label为0
    # noises为生成网络的输入
    true_labels = t.ones(opt.batch_size).to(device)
    fake_labels = t.zeros(opt.batch_size).to(device)
    fix_noises = t.randn(opt.batch_size, opt.nz, 1, 1).to(device)
    noises = t.randn(opt.batch_size, opt.nz, 1, 1).to(device)

    errord_meter = AverageValueMeter()
    errorg_meter = AverageValueMeter()

    epochs = range(opt.max_epoch)
    for epoch in iter(epochs):
        for ii, (img, _) in tqdm.tqdm(enumerate(dataloader)):
            real_img = img.to(device)

            if ii % opt.d_every == 0:
                # 训练判别器
                optimizer_d.zero_grad()
                ## 尽可能的把真图片判别为正确
                output = netd(real_img)
                error_d_real = criterion(output, true_labels)
                error_d_real.backward()

                ## 尽可能把假图片判别为错误
                noises.data.copy_(t.randn(opt.batch_size, opt.nz, 1, 1))
                fake_img = netg(noises).detach()  # 根据噪声生成假图
                output = netd(fake_img)
                error_d_fake = criterion(output, fake_labels)
                error_d_fake.backward()
                optimizer_d.step()

                error_d = error_d_fake + error_d_real

                errord_meter.add(error_d.item())

            if ii % opt.g_every == 0:
                # 训练生成器
                optimizer_g.zero_grad()
                noises.data.copy_(t.randn(opt.batch_size, opt.nz, 1, 1))
                fake_img = netg(noises)
                output = netd(fake_img)
                error_g = criterion(output, true_labels)
                error_g.backward()
                optimizer_g.step()
                errorg_meter.add(error_g.item())

            if opt.vis and ii % opt.plot_every == opt.plot_every - 1:
                ## 可视化
                if os.path.exists(opt.debug_file):
                    ipdb.set_trace()
                fix_fake_imgs = netg(fix_noises)
                vis.images(fix_fake_imgs.detach().cpu().numpy()[:64] * 0.5 +
                           0.5,
                           win='fixfake')
                vis.images(real_img.data.cpu().numpy()[:64] * 0.5 + 0.5,
                           win='real')
                vis.plot('errord', errord_meter.value()[0])
                vis.plot('errorg', errorg_meter.value()[0])

        if (epoch + 1) % opt.save_every == 0:
            # 保存模型、图片
            tv.utils.save_image(fix_fake_imgs.data[:64],
                                '%s/%s.png' % (opt.save_path, epoch),
                                normalize=True,
                                range=(-1, 1))
            t.save(netd.state_dict(), 'checkpoints/netd_%s.pth' % epoch)
            t.save(netg.state_dict(), 'checkpoints/netg_%s.pth' % epoch)
            errord_meter.reset()
            errorg_meter.reset()
Esempio n. 18
0
class TACGAN():
    def __init__(self, args):
        self.lr = args.lr
        self.cuda = args.use_cuda
        self.batch_size = args.batch_size
        self.image_size = args.image_size
        self.epochs = args.epochs
        self.data_root = args.data_root
        self.dataset = args.dataset
        self.num_classes = args.num_cls
        self.save_dir = args.save_dir
        self.save_prefix = args.save_prefix
        self.continue_training = args.continue_training
        self.netG_path = args.netg_path
        self.netD_path = args.netd_path
        self.save_after = args.save_after
        self.trainset_loader = None
        self.evalset_loader = None
        self.num_workers = args.num_workers
        self.n_z = args.n_z  # length of the noise vector
        self.nl_d = args.nl_d
        self.nl_g = args.nl_g
        self.nf_g = args.nf_g
        self.nf_d = args.nf_d
        self.bce_loss = nn.BCELoss()
        self.nll_loss = nn.NLLLoss()
        self.netD = NetD(n_cls=self.num_classes, n_t=self.nl_d, n_f=self.nf_d)
        self.netG = NetG(n_z=self.n_z, n_l=self.nl_g, n_c=self.nf_g)

        # convert to cuda tensors
        if self.cuda and torch.cuda.is_available():
            print('CUDA is enabled')
            self.netD = self.netD.cuda()
            self.netG = self.netG.cuda()
            self.bce_loss = self.bce_loss.cuda()
            self.nll_loss = self.nll_loss.cuda()

        # optimizers for netD and netG
        self.optimizerD = optim.Adam(params=self.netD.parameters(),
                                     lr=self.lr,
                                     betas=(0.5, 0.999))
        self.optimizerG = optim.Adam(params=self.netG.parameters(),
                                     lr=self.lr,
                                     betas=(0.5, 0.999))

        # create dir for saving checkpoints and other results if do not exist
        if not os.path.exists(self.save_dir):
            os.makedirs(self.save_dir)
        if not os.path.exists(os.path.join(self.save_dir, 'netd_checkpoints')):
            os.makedirs(os.path.join(self.save_dir, 'netd_checkpoints'))
        if not os.path.exists(os.path.join(self.save_dir, 'netg_checkpoints')):
            os.makedirs(os.path.join(self.save_dir, 'netg_checkpoints'))
        if not os.path.exists(os.path.join(self.save_dir, 'generated_images')):
            os.makedirs(os.path.join(self.save_dir, 'generated_images'))

    # start training process
    def train(self):
        # write to the log file and print it
        log_msg = '********************************************\n'
        log_msg += '            Training Parameters\n'
        log_msg += 'Dataset:%s\nImage size:%dx%d\n' % (
            self.dataset, self.image_size, self.image_size)
        log_msg += 'Batch size:%d\n' % (self.batch_size)
        log_msg += 'Number of epochs:%d\nlr:%f\n' % (self.epochs, self.lr)
        log_msg += 'nz:%d\nnl-d:%d\nnl-g:%d\n' % (self.n_z, self.nl_d,
                                                  self.nl_g)
        log_msg += 'nf-g:%d\nnf-d:%d\n' % (self.nf_g, self.nf_d)
        log_msg += '********************************************\n\n'
        print(log_msg)
        with open(os.path.join(self.save_dir, 'training_log.txt'),
                  'a') as log_file:
            log_file.write(log_msg)
        # load trainset and evalset
        imtext_ds = ImTextDataset(data_dir=self.data_root,
                                  dataset=self.dataset,
                                  train=True,
                                  image_size=self.image_size)
        self.trainset_loader = DataLoader(dataset=imtext_ds,
                                          batch_size=self.batch_size,
                                          shuffle=True,
                                          num_workers=2)
        print("Dataset loaded successfuly")
        # load checkpoints for continuing training
        if args.continue_training:
            self.loadCheckpoints()

        # repeat for the number of epochs
        netd_losses = []
        netg_losses = []
        for epoch in range(self.epochs):
            netd_loss, netg_loss = self.trainEpoch(epoch)
            netd_losses.append(netd_loss)
            netg_losses.append(netg_loss)
            self.saveGraph(netd_losses, netg_losses)
            #self.evalEpoch(epoch)
            self.saveCheckpoints(epoch)

    # train epoch
    def trainEpoch(self, epoch):
        self.netD.train()  # set to train mode
        self.netG.train()  #! set to train mode???

        netd_loss_sum = 0
        netg_loss_sum = 0
        start_time = time()
        for i, (images, labels, captions,
                _) in enumerate(self.trainset_loader):
            batch_size = images.size(
                0
            )  # !batch size my be different (from self.batch_size) for the last batch
            images, labels, captions = Variable(images), Variable(
                labels), Variable(captions)  # !labels should be LongTensor
            labels = labels.type(
                torch.FloatTensor
            )  # convert to FloatTensor (from DoubleTensor)
            lbl_real = Variable(torch.ones(batch_size, 1))
            lbl_fake = Variable(torch.zeros(batch_size, 1))
            noise = Variable(torch.randn(batch_size,
                                         self.n_z))  # create random noise
            noise.data.normal_(0, 1)  # normalize the noise
            rnd_perm1 = torch.randperm(
                batch_size
            )  # random permutations for different sets of training tuples
            rnd_perm2 = torch.randperm(batch_size)
            rnd_perm3 = torch.randperm(batch_size)
            rnd_perm4 = torch.randperm(batch_size)
            if self.cuda:
                images, labels, captions = images.cuda(), labels.cuda(
                ), captions.cuda()
                lbl_real, lbl_fake = lbl_real.cuda(), lbl_fake.cuda()
                noise = noise.cuda()
                rnd_perm1, rnd_perm2, rnd_perm3, rnd_perm4 = rnd_perm1.cuda(
                ), rnd_perm2.cuda(), rnd_perm3.cuda(), rnd_perm4.cuda()

            ############### Update NetD ###############
            self.netD.zero_grad()
            # train with wrong image, wrong label, real caption
            outD_wrong, outC_wrong = self.netD(images[rnd_perm1],
                                               captions[rnd_perm2])
            lossD_wrong = self.bce_loss(outD_wrong, lbl_fake)
            lossC_wrong = self.bce_loss(outC_wrong, labels[rnd_perm1])

            # train with real image, real label, real caption
            outD_real, outC_real = self.netD(images, captions)
            lossD_real = self.bce_loss(outD_real, lbl_real)
            lossC_real = self.bce_loss(outC_real, labels)

            # train with fake image, real label, real caption
            fake = self.netG(noise, captions)
            outD_fake, outC_fake = self.netD(fake.detach(),
                                             captions[rnd_perm3])
            lossD_fake = self.bce_loss(outD_fake, lbl_fake)
            lossC_fake = self.bce_loss(outC_fake, labels[rnd_perm3])

            # backward and forwad for NetD
            netD_loss = lossC_wrong + lossC_real + lossC_fake + lossD_wrong + lossD_real + lossD_fake
            netD_loss.backward()
            self.optimizerD.step()

            ########## Update NetG ##########
            # train with fake data
            self.netG.zero_grad()
            noise.data.normal_(0, 1)  # normalize the noise vector
            fake = self.netG(noise, captions[rnd_perm4])
            d_fake, c_fake = self.netD(fake, captions[rnd_perm4])
            lossD_fake_G = self.bce_loss(d_fake, lbl_real)
            lossC_fake_G = self.bce_loss(c_fake, labels[rnd_perm4])
            netG_loss = lossD_fake_G + lossC_fake_G
            netG_loss.backward()
            self.optimizerG.step()

            netd_loss_sum += netD_loss.data[0]
            netg_loss_sum += netG_loss.data[0]
            ### print progress info ###
            print(
                'Epoch %d/%d, %.2f%% completed. Loss_NetD: %.4f, Loss_NetG: %.4f'
                % (epoch, self.epochs,
                   (float(i) / len(self.trainset_loader)) * 100,
                   netD_loss.data[0], netG_loss.data[0]))

        end_time = time()
        netd_avg_loss = netd_loss_sum / len(self.trainset_loader)
        netg_avg_loss = netg_loss_sum / len(self.trainset_loader)
        epoch_time = (end_time - start_time) / 60
        log_msg = '-------------------------------------------\n'
        log_msg += 'Epoch %d took %.2f minutes\n' % (epoch, epoch_time)
        log_msg += 'NetD average loss: %.4f, NetG average loss: %.4f\n\n' % (
            netd_avg_loss, netg_avg_loss)
        print(log_msg)
        with open(os.path.join(self.save_dir, 'training_log.txt'),
                  'a') as log_file:
            log_file.write(log_msg)
        return netd_avg_loss, netg_avg_loss

    # eval epoch
    def evalEpoch(self, epoch):
        #self.netD.eval()
        #self.netG.eval()
        return 0

    # draws and saves the loss graph upto the current epoch
    def saveGraph(self, netd_losses, netg_losses):
        plt.plot(netd_losses, color='red', label='NetD Loss')
        plt.plot(netg_losses, color='blue', label='NetG Loss')
        plt.xlabel('epoch')
        plt.ylabel('error')
        plt.legend(loc='best')
        plt.savefig(os.path.join(self.save_dir, 'loss_graph.png'))
        plt.close()

    # save after each epoch
    def saveCheckpoints(self, epoch):
        if epoch % self.save_after == 0:
            name_netD = "netd_checkpoints/netD_" + self.save_prefix + "_epoch_" + str(
                epoch) + ".pth"
            name_netG = "netg_checkpoints/netG_" + self.save_prefix + "_epoch_" + str(
                epoch) + ".pth"
            torch.save(self.netD.state_dict(),
                       os.path.join(self.save_dir, name_netD))
            torch.save(self.netG.state_dict(),
                       os.path.join(self.save_dir, name_netG))
            print("Checkpoints for epoch %d saved successfuly" % (epoch))

    # load checkpoints to continue training
    def loadCheckpoints(self):
        self.netG.load_state_dict(torch.load(self.netG_path))
        self.netD.load_state_dict(torch.load(self.netD_path))
        print("Checkpoints loaded successfuly")