speaker, start_flag, args.num_samples, raw_audio=raw_audio) model = Model(cost) model.set_parameter_values(parameters) print "Successfully loaded the parameters." if args.sample_one_step: gen_x, gen_k, gen_w, gen_pi, gen_phi, gen_pi_att = \ parrot.sample_using_input(data_tr, args.num_samples) else: gen_x, gen_k, gen_w, gen_pi, gen_phi, gen_pi_att = parrot.sample_model( labels_tr, labels_mask_tr, features_mask_tr, speaker_tr, args.num_samples, args.num_steps) print "Successfully sampled the parrot." gen_x = gen_x.swapaxes(0, 1) gen_phi = gen_phi.swapaxes(0, 1) features_lengths = [] labels_lengths = [] for idx in range(args.num_samples): # Heuristic for deciding when to end the sampling. this_phi = gen_phi[idx] this_labels_length = int(labels_mask_tr[idx].sum()) try:
latent_var_tr_old = numpy.tile(latent_var_tr_old, (args.num_samples, 1)) for i in range(10000): lr_ = numpy.float32(0.001 / (1 + 3 * (i // 1000))) cost_ = embed_learn_fn(features_tr, features_mask_tr, labels_tr, labels_mask_tr, new_speakers_tr, 1., lr_) costs.append(cost_) if (i % 200) == 0: # import ipdb; ipdb.set_trace() # test_stream = parrot_stream( # args.new_dataset, False, ('test',), args.num_samples, # 10000, sorting_mult=1, labels_type=saved_args.labels_type, # quantize_features=saved_args.quantized_input) gen_x, gen_k, gen_w, gen_pi, gen_phi, gen_pi_att = parrot.sample_model( labels_tr_old, labels_mask_tr_old, features_mask_tr_old, new_speakers_tr_old, latent_var_tr_old, LATENT_NUM * args.num_samples) for j, this_sample in enumerate(gen_x.swapaxes(1, 0)): this_sample = this_sample[:int( features_mask_tr_old.sum(axis=0)[j])] generate_wav(this_sample, os.path.join(args.save_dir, 'samples', 'adaptation'), "sample_{}_{}_iters_{}".format( args.samples_name, j, i), sptk_dir=args.sptk_dir, world_dir=args.world_dir, norm_info_file=norm_info_file, do_post_filtering=args.do_post_filtering) if len(costs) != 0: