def main(args): ts = time.strftime('%Y-%b-%d-%H:%M:%S', time.gmtime()) #### get data # with open(os.path.join(args.data_dir, args.data_file), 'rb') as file: # data = pickle.load(file) data_obj = _Data() train_data, valid_data, vocab_obj = data_obj.f_load_data_amazon(args) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") logger_obj = Logger() logger_obj.f_add_writer(args) ### add count parameters if not args.test: now_time = datetime.datetime.now() time_name = str(now_time.day)+"_"+str(now_time.month)+"_"+str(now_time.hour)+"_"+str(now_time.minute) model_file = os.path.join(args.model_path, args.model_name+"/model_best_"+time_name+".pt") args.model_file = model_file print("vocab_size", len(vocab_obj.m_w2i)) ### get model # user_num = 10 network = REVIEWDI(vocab_obj, args, device=device) total_param_num = 0 for name, param in network.named_parameters(): if param.requires_grad: param_num = param.numel() total_param_num += param_num print(name, "\t", param_num) print("total parameters num", total_param_num) if not args.test: optimizer = Optimizer(network.parameters(), args) trainer = TRAINER(vocab_obj, args, device) trainer.f_train(train_data, valid_data, network, optimizer, logger_obj) if args.test: print("="*10, "eval", "="*10) # eval_obj = EVAL(vocab_obj, args, device) # eval_obj.f_init_eval(network, args.model_file, reload_model=True) # eval_obj.f_eval(valid_data) print("="*10, "inference", "="*10) infer = INFER(vocab_obj, args, device) infer.f_init_infer(network, args.model_file, reload_model=True) infer.f_inference(valid_data) logger_obj.f_close_writer()
def main(args): ts = time.strftime('%Y-%b-%d-%H:%M:%S', time.gmtime()) #### get data data_obj = _Data() train_data, valid_data, vocab_obj = data_obj.f_load_data_google(args) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") logger_obj = Logger() logger_obj.f_add_writer(args) # print(vocab_obj.m_w2i['the']) # exit() if not args.test: now_time = datetime.datetime.now() time_name = str(now_time.day) + "_" + str(now_time.month) + "_" + str( now_time.hour) + "_" + str(now_time.minute) model_file = os.path.join( args.model_path, args.model_name + "/model_best_" + time_name + ".pt") args.model_file = model_file ### add count parameters ### get model vocab_size = len(vocab_obj.m_w2i) print("vocab_size", vocab_size) network = REVIEWDI(vocab_obj, args, device=device) if not args.test: optimizer = Optimizer(network.parameters(), args) trainer = TRAINER(vocab_obj, args, device) trainer.f_train(train_data, valid_data, network, optimizer, logger_obj) if args.test: print("=" * 10, "eval") # eval_obj = EVAL(vocab_obj, args, device) # eval_obj.f_init_eval(network, args.model_file, reload_model=True) # eval_obj.f_eval(valid_data) print("=" * 10, "inference") infer = INFER(vocab_obj, args, device) infer.f_init_infer(network, args.model_file, reload_model=True) infer.f_inference(valid_data) logger_obj.f_close_writer()
def main(args): ts = time.strftime('%Y-%b-%d-%H:%M:%S', time.gmtime()) #### get data # with open(os.path.join(args.data_dir, args.data_file), 'rb') as file: # data = pickle.load(file) # data_obj = _Data() # data_obj.f_create_data(args) int_to_vocab, vocab_to_int, n_vocab, in_text, out_text = get_data_from_file( flags.train_file, flags.batch_size, flags.seq_size) # exit() # train_data, valid_data, vocab_obj, user_num= data_obj._load_data_amazon(args) # train_data, valid_data, vocab_obj, user_num = data_obj._load_data_amazon(args) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") logger_obj = Logger() logger_obj.f_add_writer(args) ### add count parameters print("vocab_size", len(int_to_vocab)) ### get model user_num = 10 network = REVIEWDI(n_vocab, flags.seq_size, flags.embedding_size, flags.lstm_size, device=device) optimizer = Optimizer(network.parameters(), args) trainer = TRAINER(args, flags.seq_size, device) trainer.f_train(in_text, out_text, network, optimizer, logger_obj) # print("*"*10, "inference") # infer = INFER(vocab_obj, args, device) # infer.f_init_infer(network, args.model_file, reload_model=True) # infer.f_inference(valid_data) logger_obj.f_close_writer()
def main(args): ts = time.strftime('%Y-%b-%d-%H:%M:%S', time.gmtime()) seed = 1111 set_seed(seed) #### get data data_obj = _Data() train_data, valid_data, vocab_obj = data_obj.f_load_data(args) # train_data, valid_data = data() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("device", device) if args.train: now_time = datetime.datetime.now() time_name = str(now_time.month)+"_"+str(now_time.day)+"_"+str(now_time.hour)+"_"+str(now_time.minute) model_file = os.path.join(args.model_path, args.model_name+"/model_best_"+time_name+"_"+args.data_name+".pt") args.model_file = model_file print("vocab_size", vocab_obj.vocab_size) print("user num", vocab_obj.user_size) ### get model network = REVIEWDI(vocab_obj, args, device=device) ### add count parameters total_param_num = 0 for name, param in network.named_parameters(): if param.requires_grad: param_num = param.numel() total_param_num += param_num print(name, "\t", param_num) print("total parameters num", total_param_num) if args.train: logger_obj = Logger() logger_obj.f_add_writer(args) optimizer = Optimizer(network.parameters(), args) trainer = TRAINER(vocab_obj, args, device) trainer.f_train(train_data, valid_data, network, optimizer, logger_obj) logger_obj.f_close_writer() if args.test or args.eval: print("="*10, "test", "="*10) infer_obj = INFER(vocab_obj, args, device) infer_obj.f_init_infer(network, args.model_file, reload_model=True) infer_obj.f_inference(valid_data) if args.eval: print("="*10, "eval", "="*10) eval_obj = _EVAL(vocab_obj, args, device) eval_obj.f_init_eval(network, args.model_file, reload_model=True) eval_obj.f_eval(valid_data)
def main(args): ts = time.strftime('%Y-%b-%d-%H:%M:%S', time.gmtime()) #### get data set_seed(1111) data_obj = _Data() train_data, valid_data, vocab_obj = data_obj.f_load_data_amazon(args) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") logger_obj = Logger() logger_obj.f_add_writer(args) ### add count parameters if args.train: now_time = datetime.datetime.now() time_name = str(now_time.month)+"_"+str(now_time.day)+"_"+str(now_time.hour)+"_"+str(now_time.minute) model_file = os.path.join(args.model_path, args.model_name+"/model_best_"+time_name+"_"+args.data_name+".pt") args.model_file = model_file print("vocab_size", len(vocab_obj.m_w2i)) ### get model # user_num = 10 network = REVIEWDI(vocab_obj, args, device=device) total_param_num = 0 for name, param in network.named_parameters(): if param.requires_grad: param_num = param.numel() total_param_num += param_num print(name, "\t", param_num) print("total parameters num", total_param_num) if args.train: optimizer = Optimizer(network.parameters(), args) trainer = TRAINER(vocab_obj, args, device) trainer.f_train(train_data, valid_data, network, optimizer, logger_obj) if args.test or args.eval: print("="*10, "test", "="*10) infer = INFER(vocab_obj, args, device) infer.f_init_infer(network, args.model_file, reload_model=True) infer.f_inference(valid_data) if args.eval: print("="*10, "eval", "="*10) eval_obj = EVAL(vocab_obj, args, device) eval_obj.f_init_eval(network, args.model_file, reload_model=True) eval_obj.f_eval(valid_data) # infer = INFER(vocab_obj, args, device) # infer.f_init_infer(network, args.model_file, reload_model=True) # input_text = "verrry cheaply constructed , not as comfortable as i expected . i have been wearing this brand , but the first time i wore it , it was a little more than a few days ago . i have been wearing this brand before , so far , no complaints . i will be ordering more in different colors . update : after washing & drying , i will update after washing . after washing , this is a great buy . the fabric is not as soft as it appears to be made of cotton material . <eos>" # infer.f_search_text(input_text, train_data) logger_obj.f_close_writer()