def test_student(args, student_train_loader, student_labels, student_test_loader, test_size, cat_emb_size, num_conts, device, sensitive_idx):
    student_model = RegressionModel(emb_szs=cat_emb_size,
                    n_cont=num_conts,
                    emb_drop=0.04,
                    out_sz=1,
                    szs=[1000, 500, 250],
                    drops=[0.001, 0.01, 0.01],
                    y_range=(0, 1)).to(device)

    criterion = nn.BCELoss()
    optimizer = optim.SGD(student_model.parameters(), lr=args.lr, momentum=0)
    steps = 0
    running_loss = 0
    correct = 0
    print("========== Testing Student Model ==========")
    for epoch in range(args.epochs):
        student_model.train()
        train_loader = student_loader(student_train_loader, student_labels)
        for (cats, conts) , labels in train_loader:
        #for _batch_idx, (data, target) in enumerate(tqdm(train_loader)):
            #cats = data[0]
            #conts = data[1]
            steps += 1

            optimizer.zero_grad()
            output = student_model(cats, conts).view(-1)
            labels = labels.to(torch.float32)
            loss = criterion(output, labels)
            loss.backward()
            optimizer.step()
            running_loss += loss.item()

        #            if steps % 50 == 0:
            student_model.eval()
            test_loss = 0
            correct = 0
            i = 0

            avg_recall = 0
            avg_precision = 0
            overall_results = []
            avg_eq_odds = 0
            avg_dem_par = 0
            avg_tpr = 0
            avg_tp = 0
            avg_tn = 0
            avg_fp = 0
            avg_fn = 0

            with torch.no_grad():
                for batch_idx, (cats, conts, target) in enumerate(student_test_loader):
                    print("target\n", sum(target))
                    i+=1
                    output = student_model(cats, conts)
                    loss += criterion(output, target).item()
                    test_loss = test_loss + ((1 / (batch_idx + 1)) * (loss.data - test_loss))
                    pred = (output > 0.5).float()
                    print("pred\n", sum(pred))
                    correct += pred.eq(target.view_as(pred)).sum().item()

                    curr_datetime = datetime.now()
                    curr_hour = curr_datetime.hour
                    curr_min = curr_datetime.minute

                    pred_df = pd.DataFrame(pred.numpy())
                    pred_df.to_csv(f"pred_results/{args.run_name}_{curr_hour}-{curr_min}.csv")

                    #print(pred, np.sum(np.squeeze(pred.eq(target.data.view_as(pred))).cpu().numpy()))
                    #correct += np.sum(np.squeeze(pred.eq(target.data.view_as(pred))).cpu().numpy())
                    #total += cats.size(0)


                    # confusion matrixç
                    tn, fp, fn, tp = confusion_matrix(target, pred).ravel()
                    avg_tn += tn
                    avg_fp += fp
                    avg_fn += fn
                    avg_tp += tp

                    # position of col for sensitive values
                    sensitive = [i[sensitive_idx].item() for i in cats]
                    cat_len = max(sensitive)

                    #exit()
                    sub_cm = []
                    # print(cat_len)
                    for j in range(cat_len+1):
                        try:
                            idx = list(locate(sensitive, lambda x: x == j))
                            sub_tar = target[idx]
                            sub_pred = pred[idx]
                            sub_tn, sub_fp, sub_fn, sub_tp = confusion_matrix(sub_tar, sub_pred).ravel()
                        except:
                            # when only one value to predict
                            print("----WHAT?")
                            temp_tar = int(sub_tar.numpy()[0])
                            temp_pred = int(sub_pred.numpy()[0])
                            # print(tar, pred)
                            if temp_tar and temp_pred:
                                sub_tn, sub_fp, sub_fn, sub_tp = 0, 0, 0, 1
                            elif temp_tar and not temp_pred:
                                sub_tn, sub_fp, sub_fn, sub_tp = 0, 0, 1, 0
                            elif not temp_tar and not temp_pred:
                                sub_tn, sub_fp, sub_fn, sub_tp = 1, 0, 0, 0
                            elif not temp_tar and temp_pred:
                                sub_tn, sub_fp, sub_fn, sub_tp = 0, 1, 0, 0
                            else:
                                sub_tn, sub_fp, sub_fn, sub_tp = 0, 0, 0, 0

                        total = mysum(sub_tn, sub_fp, sub_fn, sub_tp)
                        print("??", total)
                        sub_cm.append((sub_tn / total, sub_fp / total, sub_fn / total, sub_tp / total))

                    # Fairness metrics

                    group_metrics = MetricFrame({'precision': skm.precision_score, 'recall': skm.recall_score},
                                                target, pred,
                                                sensitive_features=sensitive)


                    demographic_parity = flm.demographic_parity_difference(target, pred,
                                                                           sensitive_features=sensitive)

                    eq_odds = flm.equalized_odds_difference(target, pred,
                                                            sensitive_features=sensitive)

                    # metric_fns = {'true_positive_rate': true_positive_rate}

                    tpr = MetricFrame(true_positive_rate,
                                      target, pred,
                                      sensitive_features=sensitive)

                    # tpr = flm.true_positive_rate(target, pred,sample_weight=sensitive)
                    sub_results = group_metrics.overall.to_dict()
                    sub_results_by_group = group_metrics.by_group.to_dict()

                    # print("\n", group_metrics.by_group, "\n")
                    avg_precision += sub_results['precision']
                    avg_recall += sub_results['recall']
                    print("pre_rec", sub_results)
                    overall_results.append(sub_results_by_group)
                    avg_eq_odds += eq_odds
                    print("eqo", eq_odds)
                    avg_dem_par += demographic_parity
                    print("dempar", demographic_parity)
                    avg_tpr += tpr.difference(method='between_groups')
                    print("tpr", tpr.difference(method='between_groups'))

            total = mysum(avg_tn, avg_fp, avg_fn, avg_tp)
            print("!!", total)
            cm = (avg_tn / total, avg_fp / total, avg_fn / total, avg_tp / total)
            test_loss /= test_size
            accuracy = correct / test_size
            avg_loss = test_loss

            return accuracy, avg_loss, avg_precision, avg_recall, avg_eq_odds, avg_tpr, avg_dem_par, cm, sub_cm, overall_results