Esempio n. 1
0
    def initialize(self, ctx):
        """
        Initialize model. This will be called during model loading time
        :param context: Initial context contains model server system properties.
        :return:
        """
        self.properties = ctx.system_properties
        self.initialized = True
        #  load the model, refer 'c     ustom handler class' above for details
        self.device = torch.device("cuda:" + str(self.properties.get("gpu_id")) if torch.cuda.is_available() else "cpu")

        model_dir = self.properties.get("model_dir")

        # Read model serialize/pt file
        model_pt_path = os.path.join(model_dir, "model.bin")
        # # Read model definition file
        # model_def_path = os.path.join(model_dir, "model.py")
        # if not os.path.isfile(model_def_path):
        #     raise RuntimeError("Missing the model definition file")
        PRE_TRAINED_MODEL_NAME = 'dccuchile/bert-base-spanish-wwm-cased'

        from model import SentimentClassifier

        self.model = SentimentClassifier(3)
        self.model.to(self.device)
        self.tokenizer = BertTokenizer.from_pretrained(PRE_TRAINED_MODEL_NAME)

        self.model.load_state_dict(torch.load(model_pt_path,map_location=torch.device(self.device)))

        self.initialized = True

        print('CARGADOOOO')
Esempio n. 2
0
def main(*args, **kwargs):
    flags.DEFINE_boolean('debug', False, '')
    flags.DEFINE_integer('epochs', 1, '')
    flags.DEFINE_integer('batch_size', 8, '')
    flags.DEFINE_integer('seq_length', 96, '')
    flags.DEFINE_integer('num_workers', 8, '')
    flags.DEFINE_integer('seed', 62, '')
    flags.DEFINE_float('lr', 1e-2, '')
    flags.DEFINE_float('dropout_pct', 0.5, '')
    flags.DEFINE_string('model', 'roberta-base', '')

    FLAGS = flags.FLAGS

    seed_everything(FLAGS.seed)
    # logfile
    sh.rm('-r', '-f', 'logs')
    sh.mkdir('logs')

    params = dict(batch_size=FLAGS.batch_size,
                  model=FLAGS.model,
                  lr=FLAGS.lr,
                  dropout_pct=FLAGS.dropout_pct,
                  num_workers=FLAGS.num_workers)

    ## read input
    data_path = Path("input")
    train_df = pd.read_csv(data_path / "train.csv")
    train_df.dropna(inplace=True)
    test_df = pd.read_csv(data_path / "test.csv")

    skf = StratifiedKFold(n_splits=10, shuffle=True, random_state=FLAGS.seed)

    for fold, (train_idx,
               val_idx) in enumerate(skf.split(train_df, train_df.sentiment),
                                     start=1):
        print(f"Fold {fold}")
        train_ds = TweetDataset(train_df.iloc[train_idx], FLAGS.model,
                                FLAGS.seq_length)
        val_ds = TweetDataset(train_df.iloc[val_idx], FLAGS.model,
                              FLAGS.seq_length)

        model = SentimentClassifier(params, train_ds, val_ds)
        trainer = pl.Trainer(default_root_dir='logs',
                             gpus=(1 if th.cuda.is_available() else 0),
                             max_epochs=FLAGS.epochs,
                             fast_dev_run=FLAGS.debug,
                             logger=pl.loggers.TensorBoardLogger('logs',
                                                                 name='imdb',
                                                                 version=0))
        trainer.fit(model)
Esempio n. 3
0
from flask import Flask, render_template, request
from model import SentimentClassifier

clf = SentimentClassifier()
app = Flask(__name__)

@app.route('/', methods = ['POST', 'GET'])
def index_page():
    if request.method == 'POST':
        text = request.form['text']
        prediction_message = clf.getSentiment(text)
        return render_template('index.html', text = text,
                               prediction_message = prediction_message)
    return render_template('index.html')

if __name__ == "__main__":
    app.run(debug = True)
Esempio n. 4
0
            print("Substituting %s:%s with %s:%s" %
                  (key, old_args[key], key, old_args[key]))
            old_args[key] = args[key]

        # replace args
        args = old_args

        # clean up a bit
        args.pop("checkpoint", None)

        print("New args:")
        print(args)

    # Instantiating the classifier model
    print("Building Model")
    model = SentimentClassifier(args["freeze_bert"], args["dropout"])
    model.cuda(args["gpu"])  # Enable gpu support for the model

    print("Creating criterion and optimizer objects")
    criterion = nn.BCEWithLogitsLoss()
    optimizer = optim.SGD(model.parameters(), lr=args["lr"])

    # Creating dataloaders
    print("Creating train and val dataloaders")
    dataset_train = SSTDataset(filename='data/SST-2/train.tsv',
                               maxlen=args["maxlen"])
    dataset_validation = SSTDataset(filename='data/SST-2/dev.tsv',
                                    maxlen=args["maxlen"])

    train_loader = DataLoader(dataset_train,
                              batch_size=args["batch_size"],
Esempio n. 5
0
    parser = argparse.ArgumentParser()

    # checkpoint to use (from models/)
    parser.add_argument('--checkpoint', type=str, required=False)
    # max len of sequences
    parser.add_argument('--maxlen', type=int, required=False)
    args = parser.parse_args()
    args = args.__dict__
    print("Passed args:")
    print(args)

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print("Found device: %s" % device)

    print("loading model...")
    model = SentimentClassifier()
    model.to(device)  # Enable gpu support for the model

    checkpoint = torch.load(args["checkpoint"], map_location=device)
    model.load_state_dict(checkpoint["model_state_dict"])
    model.eval()
    tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
    print("model loaded")

    if not args["maxlen"]:
        args["maxlen"] = checkpoint["args"]["maxlen"]
        print("using maxlen from import checkpoint, new args:")
        print(args)

    print("connecting to redis...")
    redis_connection = redis.Redis(host=os.environ["REDIS_HOST"], port=os.environ["REDIS_PORT"], charset="utf-8")
Esempio n. 6
0
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from transformers import BertTokenizer, BertModel
import pandas as pd
from model import SentimentClassifier
from dataset import SSTDataset

#Create validation set
val_set = SSTDataset(filename='data/dev.tsv', maxlen=30)
#Create validation dataloader
val_loader = DataLoader(val_set, batch_size=64, num_workers=5)
#Create the network
net = SentimentClassifier()
#CPU or GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#Put the network to the GPU if available
net = net.to(device)
#Load the state dictionary of the network
net.load_state_dict(torch.load('./models/model', map_location=device))
#Takes as the input the logits of the positive class and computes the binary cross-entropy
criterion = nn.BCEWithLogitsLoss()


def get_accuracy_from_logits(logits, labels):
    #Get a tensor of shape [B, 1, 1] with probabilities that the sentiment is positive
    probs = torch.sigmoid(logits.unsqueeze(-1))
    #Convert probabilities to predictions, 1 being positive and 0 being negative
    soft_probs = (probs > 0.5).long()
    #Check which predictions are the same as the ground truth and calculate the accuracy
Esempio n. 7
0
    neg_pred, neut_pred, pos_pred = predict(raw_tweet)
    response = {}

    response["response"] = {
        'sentiment': {
            "positive": str(pos_pred),
            "neutral": str(neut_pred),
            "negative": str(neg_pred),
        },
        "tweet": str(raw_tweet),
        "time_taken": str(time.time() - start_time),
    }

    return flask.jsonify(response)


@app.route('/')
def index():
    return app.send_static_file('index.html')


if __name__ == "__main__":
    MODEL = SentimentClassifier(len(CLASS_NAMES))
    TOKENIZER = BertTokenizer.from_pretrained(PRE_TRAINED_MODEL_NAME)
    MODEL = nn.DataParallel(MODEL)
    MODEL.load_state_dict(
        torch.load(MODEL_PATH, map_location=torch.device(DEVICE)))
    MODEL.to(DEVICE)
    MODEL.eval()
    app.run(host='0.0.0.0')
def get_model(args):

    sd = None
    model_args = args
    if args.load is not None and args.load != '':
        sd = torch.load(args.load)
        if 'args' in sd:
            model_args = sd['args']
        if 'sd' in sd:
            sd = sd['sd']

    ntokens = model_args.data_size
    concat_pools = model_args.concat_max, model_args.concat_min, model_args.concat_mean
    if args.model == 'transformer':
        model = SentimentClassifier(model_args.model, ntokens, None, None, None, model_args.classifier_hidden_layers, model_args.classifier_dropout,
                                      None, concat_pools, False, model_args)
    else:
        model = SentimentClassifier(model_args.model, ntokens, model_args.emsize, model_args.nhid, model_args.nlayers,
                                      model_args.classifier_hidden_layers, model_args.classifier_dropout, model_args.all_layers, concat_pools, False, model_args)
    args.heads_per_class = model_args.heads_per_class
    args.use_softmax = model_args.use_softmax
    try:
        args.classes = list(model_args.classes)
    except:
        args.classes = [args.label_key]

    try:
        args.dual_thresh = model_args.dual_thresh and not model_args.joint_binary_train
    except:
        args.dual_thresh = False

    if args.cuda:
        model.cuda()

    if args.fp16:
        model.half()

    if sd is not None:
        try:
            model.load_state_dict(sd)
        except:
            # if state dict has weight normalized parameters apply and remove weight norm to model while loading sd
            if hasattr(model.lm_encoder, 'rnn'):
                apply_weight_norm(model.lm_encoder.rnn)
            else:
                apply_weight_norm(model.lm_encoder)
            model.lm_encoder.load_state_dict(sd)
            remove_weight_norm(model)

    if args.neurons > 0:
        print('WARNING. Setting neurons %s' % str(args.neurons))
        model.set_neurons(args.neurons)
    return model
Esempio n. 9
0
            #Save the current network's state dictionary
            torch.save(net.state_dict(), 'models/model')


if __name__ == "__main__":
    #Get the parameters from arguments if used
    parser = ArgumentParser()
    parser.add_argument('-freeze_bert', action='store_true')
    parser.add_argument('-maxlen', type=int, default=25)
    parser.add_argument('-batch_size', type=int, default=32)
    parser.add_argument('-lr', type=float, default=2e-5)
    parser.add_argument('-print_every', type=int, default=100)
    parser.add_argument('-num_eps', type=int, default=5)
    args = parser.parse_args()
    #Instantiate the classifier model
    net = SentimentClassifier(args.freeze_bert)
    #CPU or GPU
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    #Put the network to the GPU if available
    net = net.to(device)
    #Takes as the input the logits of the positive class and computes the binary cross-entropy
    criterion = nn.BCEWithLogitsLoss()
    #Adam optimizer
    optimizer = optim.Adam(net.parameters(), lr=args.lr)
    #Create instances of training and validation set
    train_set = SSTDataset(filename='data/train.tsv', maxlen=args.maxlen)
    val_set = SSTDataset(filename='data/dev.tsv', maxlen=args.maxlen)
    #Create intsances of training and validation dataloaders
    train_loader = DataLoader(train_set,
                              batch_size=args.batch_size,
                              num_workers=5)
Esempio n. 10
0
parser.add_argument('--neurons',
                    default=-1,
                    type=int,
                    help='number of nenurons to extract as features')

data_config, data_parser = configure_data(parser)

data_parser.set_defaults(split='1.', data='data/binary_sst/train.csv')

args = parser.parse_args()

args.cuda = torch.cuda.is_available()

train_data, val_data, test_data = data_config.apply(args)
ntokens = args.data_size
model = SentimentClassifier(args.model, ntokens, args.emsize, args.nhid,
                            args.nlayers, 0.0, args.all_layers)
if args.cuda:
    model.cuda()

if args.fp16:
    model.half()

with open(args.load_model, 'rb') as f:
    sd = torch.load(f)

try:
    model.load_state_dict(sd)
except:
    apply_weight_norm(model.encoder.rnn)
    model.load_state_dict(sd)
    remove_weight_norm(model)
Esempio n. 11
0
df_train = pd.read_csv('train.csv')
df_test = pd.read_csv('test.csv')
df_train, df_val = train_test_split(df_train, test_size=0.25)

BATCH_SIZE = 8
MAX_LEN = 512

train_data_loader = create_data_loader(df_train, tokenizer, MAX_LEN,
                                       BATCH_SIZE)
val_data_loader = create_data_loader(df_val, tokenizer, MAX_LEN, BATCH_SIZE)
test_data_loader = create_data_loader(df_test, tokenizer, MAX_LEN, BATCH_SIZE)

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

model = SentimentClassifier(n_classes=3)
model = model.to(device)

EPOCHS = 10

optimizer = AdamW(model.parameters(), lr=2e-5, correct_bias=False)
total_steps = len(train_data_loader) * EPOCHS

scheduler = get_linear_schedule_with_warmup(optimizer,
                                            num_warmup_steps=0,
                                            num_training_steps=total_steps)

loss_fn = nn.CrossEntropyLoss().to(device)

history = defaultdict(list)
best_accuracy = 0
Esempio n. 12
0
	MAX_LEN = config['num_tokens']
	lr = config['lr']

	df = pd.read_csv(config['csv_path'])
	df_train, df_test = train_test_split(df, test_size=0.1, random_state=RANDOM_SEED)
	df_val, df_test = train_test_split(df_test, test_size=0.5, random_state=RANDOM_SEED)

	device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

	tokenizer = RobertaTokenizer.from_pretrained(PRE_TRAINED_MODEL_NAME)

	train_data_loader = create_data_loader(df_train, tokenizer, MAX_LEN, BATCH_SIZE)
	val_data_loader = create_data_loader(df_val, tokenizer, MAX_LEN, BATCH_SIZE)
	test_data_loader = create_data_loader(df_test, tokenizer, MAX_LEN, BATCH_SIZE)

	model = SentimentClassifier(NUM_CLASSES, PRE_TRAINED_MODEL_NAME)
	model = model.to(device)
	optimizer = optim.Adam(model.parameters(), lr=lr)
	loss_fn = nn.CrossEntropyLoss().to(device)

	history = defaultdict(list)
	best_accuracy = 0

	for epoch in tqdm(range(EPOCHS)):
		print(f"Epoch {epoch + 1}/{EPOCHS}")
		print("-" * 10)

		train_acc, train_loss = train_epoch(
			model, train_data_loader, loss_fn, optimizer, device, len(df_train)
		)
Esempio n. 13
0
class ModelHandler(BaseHandler):
    """
    A custom model handler implementation.
    """
    def __init__(self):
        self.model = None
        self._context = None
        self.initialized = False
        self.explain = False
        self.target = 0

    def initialize(self, ctx):
        """
        Initialize model. This will be called during model loading time
        :param context: Initial context contains model server system properties.
        :return:
        """
        self.properties = ctx.system_properties
        self.initialized = True
        #  load the model, refer 'c     ustom handler class' above for details
        self.device = torch.device("cuda:" +
                                   str(self.properties.get("gpu_id")) if torch.
                                   cuda.is_available() else "cpu")

        model_dir = self.properties.get("model_dir")

        # Read model serialize/pt file
        model_pt_path = os.path.join(model_dir, "model.bin")
        # # Read model definition file
        # model_def_path = os.path.join(model_dir, "model.py")
        # if not os.path.isfile(model_def_path):
        #     raise RuntimeError("Missing the model definition file")
        PRE_TRAINED_MODEL_NAME = 'dccuchile/bert-base-spanish-wwm-cased'

        from model import SentimentClassifier

        self.model = SentimentClassifier(2)
        self.model.to(self.device)
        self.tokenizer = BertTokenizer.from_pretrained(PRE_TRAINED_MODEL_NAME)

        self.model.load_state_dict(
            torch.load(model_pt_path, map_location=torch.device(self.device)))

        self.model = self.model.eval()

        self.initialized = True

        logger.debug(
            'Transformer model from path {0} loaded successfully'.format(
                model_dir))

    def preprocess(self, data):
        """
        Transform raw input into model input data.
        :param batch: list of raw requests, should match batch size
        :return: list of preprocessed model input data
        """
        # # Take the input data and make it inference ready
        # text = data[0].get("data")
        # if text is None:
        try:
            reclamo = data[0].get("body").get("data")
        except:
            reclamo = data[0].get("body")

        # logger.debug(data)
        # logger.debug(str(data))

        MAX_LEN = 450
        inputs = self.tokenizer.encode_plus(
            reclamo,
            add_special_tokens=True,
            max_length=MAX_LEN,
            return_token_type_ids=False,
            padding='max_length',
            truncation=True,
            return_attention_mask=True,
            return_tensors='pt',
        )

        return {
            'review_text': reclamo,
            'input_ids': inputs['input_ids'].flatten(),
            'attention_mask': inputs['attention_mask'].flatten()
        }

    def inference(self, model_input):
        """
        Internal inference methods
        :param model_input: transformed model input data
        :return: list of inference output in NDArray
        """
        # Do some inference call to engine here and return output

        input_ids = model_input["input_ids"].to(self.device)
        attention_mask = model_input["attention_mask"].to(self.device)

        model_output, pooled_output = self.model(
            input_ids=input_ids.unsqueeze(0),
            attention_mask=attention_mask.unsqueeze(0))

        _, preds = torch.max(model_output, dim=1)

        probs = F.softmax(model_output, dim=1)

        predicted_idx = str(preds.item())

        out_dic = {
            'idx': [predicted_idx],
            'probs': probs.detach().numpy().tolist(),
            'pooled': pooled_output.detach().numpy().tolist()
        }

        out_js = json.dumps(out_dic)

        return [out_js]

    def postprocess(self, inference_output):
        """
        Return inference result.
        :param inference_output: list of inference output
        :return: list of predict results
        """
        # Take output from network and post-process to desired format
        postprocess_output = inference_output
        return postprocess_output
def run():
    df = pd.read_csv("inputs/reviews.csv")
    df["sentiment"] = df.score.apply(rating_to_sentiment)
    df_train, df_rem = train_test_split(df,
                                        test_size=0.1,
                                        random_state=config.RANDOM_SEED)
    df_val, df_test = train_test_split(df_rem,
                                       test_size=0.5,
                                       random_state=config.RANDOM_SEED)
    train_data_loader = create_data_loader(df_train, config.TOKENIZER,
                                           config.MAX_LEN, config.BATCH_SIZE)
    val_data_loader = create_data_loader(df_val, config.TOKENIZER,
                                         config.MAX_LEN, config.BATCH_SIZE)
    test_data_loader = create_data_loader(df_test, config.TOKENIZER,
                                          config.MAX_LEN, config.BATCH_SIZE)

    # data = next(iter(val_data_loader))
    # input_ids = data["input_ids"].to(config.DEVICE)
    # attention_mask = data["attention_mask"].to(config.DEVICE)
    # bert_model = BertModel.from_pretrained(config.BERT_NAME)

    model = SentimentClassifier(num_classes=len(class_labels))
    if config.LOAD_MODEL == True:
        model.load_state_dict(torch.load("best_model_state.bin"))
    model = model.to(config.DEVICE)

    optimizer = AdamW(model.parameters(), lr=2e-5, correct_bias=False)
    total_steps = len(train_data_loader) * config.EPOCHS
    scheduler = get_linear_schedule_with_warmup(optimizer,
                                                num_warmup_steps=0,
                                                num_training_steps=total_steps)
    loss_fn = nn.CrossEntropyLoss().to(config.DEVICE)

    history = defaultdict(list)
    best_accuracy = 0

    for epoch in range(config.EPOCHS):
        print(f"Epoch {epoch + 1}/{config.EPOCHS}")
        print("-" * 10)

        train_acc, train_loss = train_fn(
            model,
            train_data_loader,
            loss_fn,
            optimizer,
            config.DEVICE,
            scheduler,
            len(df_train),
        )

        print(f"Train loss {train_loss} accuracy {train_acc}")

        val_acc, val_loss = eval_fn(model, val_data_loader, loss_fn,
                                    config.DEVICE, len(df_val))

        print(f"Val   loss {val_loss} accuracy {val_acc}")
        print()

        history["train_acc"].append(train_acc)
        history["train_loss"].append(train_loss)
        history["val_acc"].append(val_acc)
        history["val_loss"].append(val_loss)

        if val_acc > best_accuracy:
            torch.save(model.state_dict(), "best_model_state.bin")
            best_accuracy = val_acc
def predict():
    sentence = request.args.get("sentence")
    start_time = time.time()
    positive_prediction = sentence_prediction(sentence, model=MODEL)
    negative_prediction = 1 - positive_prediction
    response = {}
    response["response"] = {
        "positive": str(positive_prediction),
        "negative": str(negative_prediction),
        "neutral": str(neutral_prediction),
        "sentence": str(sentence),
        "time_taken": str(time.time() - start_time),
    }
    return flask.jsonify(response)


if __name__ == "__main__":
    RANDOM_SEED = 42
    np.random.seed(RANDOM_SEED)
    torch.manual_seed(RANDOM_SEED)

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print(device)

    MODEL = SentimentClassifier(3)
    MODEL.load_state_dict(torch.load(config.MODEL_PATH, map_location='cpu'))
    MODEL.to(DEVICE)
    MODEL.eval()
    app.run()

    # oaded_state = torch.load(model_path+seq_to_seq_test_model_fname,map_location='cuda:0'