Esempio n. 1
0
def train_stacked_autoencoder(X_train, X_test):
    model = StackedAutoEncoder()
    """ Tensorflow needs to see the graph before initilize 
        the variables for the computation """
    model.build_graph()
    config = tf.ConfigProto(intra_op_parallelism_threads=_PROCESSORS,
                            inter_op_parallelism_threads=_PROCESSORS)
    sess = tf.Session(config=config)

    sess.run(tf.global_variables_initializer())

    print("Training Stacked Autoencoder...")
    for epoch in range(FLAGS.epochs * FLAGS.batch_size):
        batch_x = next_batch(FLAGS.batch_size, X_train)
        train_dict = {
            model.x: batch_x,
            model.learning_rate_stacked: FLAGS.learning_rate_stacked,
            model.reg_stacked: FLAGS.reg_stacked,
            model.noise: FLAGS.noise,
            model.fraction: FLAGS.fraction
        }
        sess.run(model.optimizer, feed_dict=train_dict)
        if epoch % 10 == 0:
            c = sess.run([model.loss], feed_dict=train_dict)
            print("Train Loss: ", c)
    """ Computing the encoded version of X_train and X_test """
    X_train_dict = {
        model.x: X_train,
        model.learning_rate_stacked: FLAGS.learning_rate_stacked,
        model.reg_stacked: FLAGS.reg_stacked,
        model.noise: FLAGS.noise,
        model.fraction: FLAGS.fraction
    }
    X_test_dict = {
        model.x: X_test,
        model.learning_rate_stacked: FLAGS.learning_rate_stacked,
        model.reg_stacked: FLAGS.reg_stacked,
        model.noise: FLAGS.noise,
        model.fraction: FLAGS.fraction
    }

    X_train = np.asarray(sess.run([model.x_encoded], feed_dict=X_train_dict))
    X_test = np.asarray(sess.run([model.x_encoded], feed_dict=X_test_dict))
    X_train = X_train.reshape(-1, 30)
    X_test = X_test.reshape(-1, 30)
    """ Closing the session to avoid cnflicts with the test """
    return X_train, X_test
Esempio n. 2
0
# Mnist digits dataset
dataset = torchvision.datasets.MNIST(
    root='../mnist/',
    train=True,  # this is training data
    transform=torchvision.transforms.ToTensor(
    ),  # Converts a PIL.Image or numpy.ndarray to                                              # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
    download=DOWNLOAD_DATA,  # download it if you don't have it
)

# dataset = MNIST('../data/mnist/', transform=img_transform)
dataloader = DataLoader(dataset,
                        batch_size=batch_size,
                        shuffle=True,
                        num_workers=8)
print("It is DAE")
model = StackedAutoEncoder().cuda()

for epoch in range(num_epochs):
    if epoch % 10 == 0:
        # Test the quality of our features with a randomly initialzed linear classifier.
        classifier = nn.Linear(10, 10).cuda()
        criterion = nn.CrossEntropyLoss()
        optimizer = torch.optim.Adam(classifier.parameters(), lr=0.001)

    model.train()
    total_time = time.time()
    correct = 0
    for i, data in enumerate(dataloader):
        img, target = data
        target = Variable(target).cuda()
        img = Variable(img).cuda()