checkpoint_path = args["<checkpoint>"] text_list_file_path = args["<text_list_file>"] dst_dir = args["<dst_dir>"] max_decoder_steps = int(args["--max-decoder-steps"]) file_name_suffix = args["--file-name-suffix"] checkpoint = torch.load(checkpoint_path) checkpoints_dir = os.path.dirname(checkpoint_path) with open(checkpoints_dir + '/ids_phones.json') as f: phids = json.load(f) model = Tacotron( n_vocab=len(phids) + 1, embedding_dim=256, mel_dim=hparams.num_mels, linear_dim=hparams.num_freq, r=hparams.outputs_per_step, padding_idx=hparams.padding_idx, use_memory_mask=hparams.use_memory_mask, ) checkpoint = torch.load(checkpoint_path) checkpoints_dir = os.path.dirname(checkpoint_path) with open(checkpoints_dir + '/ids_phones.json') as f: phids = json.load(f) phids = dict(phids) model.load_state_dict(checkpoint["state_dict"]) model.decoder.max_decoder_steps = max_decoder_steps os.makedirs(dst_dir, exist_ok=True)
collate_fn=collate_fn, pin_memory=hparams.pin_memory) exp_name = os.path.basename(exp_dir) if use_assistant: assistant = RemoteTracker(exp_name, projects_dir='Arabic', upload_source_files=[os.getcwd() + '/' + 'conf/arabic.conf', os.getcwd() + '/local/model.py', os.getcwd() + '/local/train_phones.py']) else: assistant = None # Model model = Tacotron(n_vocab=1+ len(ph_ids), embedding_dim=256, mel_dim=hparams.num_mels, linear_dim=hparams.num_freq, r=hparams.outputs_per_step, padding_idx=hparams.padding_idx, use_memory_mask=hparams.use_memory_mask, ) model = model.cuda() #model = DataParallelFix(model) optimizer = optim.Adam(model.parameters(), lr=hparams.initial_learning_rate, betas=( hparams.adam_beta1, hparams.adam_beta2), weight_decay=hparams.weight_decay) # Load checkpoint if checkpoint_path: print("Load checkpoint from: {}".format(checkpoint_path)) checkpoint = torch.load(checkpoint_path)
file_name_suffix = args["--file-name-suffix"] checkpoint_acousticmodel = torch.load(checkpoint_path_acousticmodel) checkpoint_vocoder = torch.load(checkpoint_path_vocoder) checkpoints_dir = os.path.dirname(checkpoint_path_acousticmodel) with open(checkpoints_dir + '/ids_phones.json') as f: phids = json.load(f) phids = dict(phids) acousticmodel = Tacotron( n_vocab=len(phids) + 1, embedding_dim=256, mel_dim=hparams.num_mels, linear_dim=hparams.num_freq, r=hparams.outputs_per_step, padding_idx=hparams.padding_idx, use_memory_mask=hparams.use_memory_mask, ) vocoder_model = WaveLSTM( n_vocab=257, embedding_dim=256, mel_dim=hparams.num_mels, linear_dim=hparams.num_freq, r=hparams.outputs_per_step, padding_idx=hparams.padding_idx, use_memory_mask=hparams.use_memory_mask, )