def train(opt, train_data, eval_data=None): logger.info("start training task") dim_input = 6 dim_emb = 64 num_class = train_data.num_class transformer_nhead = 2 transformer_nlayers = 1 model = TransformerModel(dim_input, dim_emb, transformer_nhead, num_class, transformer_nlayers) if model.cuda: model = move_to_gpu(model) summary(model, train_data[0]['x'].shape) try: dataloader = DataLoader( train_data, batch_size=opt.batch_size, shuffle=False, num_workers=4 ) logger.info("create training dataloader") except Exception as e: logger.error("fail to create dataloader", e) lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer=model.optimizer, milestones=[5, 10], gamma=0.1) model_path = os.path.join(opt.model_dir,opt.model_name+".pth") global_steps = 0 best = 0 for epoch in tqdm(list(range(opt.epoch)), desc='epoch'): for step, batch in enumerate(dataloader): global_steps += 1 metrics = model.train(batch) if global_steps % opt.log_steps == 0: logger.debug(f"global steps={global_steps},{metrics}") if global_steps % opt.save_steps == 0: val_metrics, eval_result = eval(opt, model, eval_data) logger.info(f"global steps={global_steps}, current={val_metrics}, best={best}, result={eval_result}") if val_metrics > best: best = val_metrics torch.save(model.state_dict(), model_path) logger.info(f"global steps={global_steps}, save model:{model_path}") lr_scheduler.step()
t_total=num_train_optimization_steps) [encoder, decoder], optimizer = amp.initialize([encoder, decoder], optimizer, opt_level='O1') criterion = SequenceFocalLoss(gamma=a, beta=b) eval_criterion = SequenceCrossEntropyLoss() update_count = 0 start = time.time() for ep in range(5): "Training" pb = tqdm.tqdm(train_dataloader) encoder.train() decoder.train() for batch in pb: record_loss, perplexity = train_one_iter(batch, fp16=True) update_count += 1 if update_count % num_gradients_accumulation == num_gradients_accumulation - 1: scheduler.step() optimizer.step() optimizer.zero_grad() # speed measure end = time.time() speed = batch_size * num_gradients_accumulation / (end - start) start = end
if args.restart: # Resume training from checkpoint with open(os.path.join(args.restart_dir, 'model.pt'), 'rb') as f: model = torch.load(f) if not args.fp16: model = model.float() model.apply(update_dropout) model.apply(update_dropatt) else: # Train from the start model = TransformerModel(ntokens, args.d_model, args.n_head, args.d_inner, args.n_layer, args.dropout) for p in model.parameters(): p.requires_grad_(True) model.train() model.apply(weights_init) args.n_all_param = sum([p.nelement() for p in model.parameters()]) if args.fp16: model = model.half() if args.multi_gpu: model = model.to(device) if args.gpu0_bsz >= 0: para_model = BalancedDataParallel(args.gpu0_bsz // args.batch_chunk, model, dim=1).to(device) else: para_model = nn.DataParallel(model, dim=1).to(device)
class TrainLoop_Transformer(): def __init__(self, opt): self.opt = opt self.dict = json.load(open(args.bpe2index, encoding='utf-8')) self.index2word = {self.dict[key]: key for key in self.dict} self.batch_size = self.opt['batch_size'] self.epoch = self.opt['epoch'] self.use_cuda = opt['use_cuda'] print('self.use_cuda:', self.use_cuda) self.device = 'cuda:{}'.format( self.opt['gpu']) if self.use_cuda else 'cpu' self.opt['device'] = self.device self.movie_ids = pkl.load(open("data/movie_ids.pkl", "rb")) # self.metrics_gen = { # "ppl": 0, # "dist1": 0, # "dist2": 0, # "dist3": 0, # "dist4": 0, # "bleu1": 0, # "bleu2": 0, # "bleu3": 0, # "bleu4": 0, # "count": 0 # } self.build_data() self.build_model() # self.init_optim( # [p for p in self.model.parameters() if p.requires_grad], # optim_states=states.get('optimizer'), # saved_optim_type=states.get('optimizer_type') # ) self.init_optim( [p for p in self.model.parameters() if p.requires_grad]) def build_data(self): if self.opt['process_data']: self.train_dataset = dataset( "../../data/data1030/output/train_cut.pkl", self.opt, 'train') self.valid_dataset = dataset( "../../data/data1030/output/valid_cut.pkl", self.opt, 'valid') self.test_dataset = dataset( "../../data/data1030/output/test_cut.pkl", self.opt, 'test') self.train_processed_set = self.train_dataset.data_process(True) self.valid_processed_set = self.valid_dataset.data_process(True) self.test_processed_set = self.test_dataset.data_process(True) pickle.dump(self.train_processed_set, open('data/train_processed_set.pkl', 'wb')) pickle.dump(self.valid_processed_set, open('data/valid_processed_set.pkl', 'wb')) pickle.dump(self.test_processed_set, open('data/test_processed_set.pkl', 'wb')) logger.info("[Save processed data]") else: try: self.train_processed_set = pickle.load( open('data/train_processed_set.pkl', 'rb')) self.valid_processed_set = pickle.load( open('data/valid_processed_set.pkl', 'rb')) self.test_processed_set = pickle.load( open('data/test_processed_set.pkl', 'rb')) except: assert 1 == 0, "No processed data" logger.info("[Load processed data]") def build_model(self): self.model = TransformerModel(self.opt, self.dict) # todo if self.opt['embedding_type'] != 'random': pass if self.opt['load_dict'] is not None: logger.info('[ Loading existing model params from {} ]' ''.format(self.opt['load_dict'])) self.model.load_model(self.opt['load_dict']) if self.use_cuda: self.model.to(self.device) def train(self): losses = [] best_val_gen = 1000 gen_stop = False patience = 0 max_patience = 5 num = 0 # file_temp = open('temp.txt', 'w') # train_output_file = open(f"output_train_tf.txt", 'w', encoding='utf-8') for i in range(self.epoch): train_set = CRSdataset(self.train_processed_set, self.opt['n_entity'], self.opt['n_concept']) train_dataset_loader = torch.utils.data.DataLoader( dataset=train_set, batch_size=self.batch_size, shuffle=True) # shuffle for context,c_lengths,response,r_length,mask_response, \ mask_r_length,entity,entity_vector,movie,\ concept_mask,dbpedia_mask,concept_vec, \ db_vec,rec in tqdm(train_dataset_loader): ####################################### 检验输入输出ok # file_temp.writelines("[Context] ", self.vector2sentence(context)) # file_temp.writelines("[Response] ", self.vector2sentence(response)) # file_temp.writelines("\n") seed_sets = [] batch_size = context.shape[0] for b in range(batch_size): seed_set = entity[b].nonzero().view(-1).tolist() seed_sets.append(seed_set) self.model.train() self.zero_grad() scores, preds, rec_scores, rec_loss, gen_loss, mask_loss, info_db_loss, info_con_loss= \ self.model(context.to(self.device), response.to(self.device), mask_response.to(self.device), concept_mask, dbpedia_mask, seed_sets, movie, \ concept_vec, db_vec, entity_vector.to(self.device), rec, test=False) ########################################## # train_output_file.writelines( # ["Loss per batch = %f\n" % gen_loss.item()]) # train_output_file.writelines(['[GroundTruth] ' + ' '.join(sen_gt)+'\n' \ # + '[Generated] ' + ' '.join(sen_gen)+'\n\n' \ # for sen_gt, sen_gen in zip(self.vector2sentence(response.cpu()), self.vector2sentence(preds.cpu()))]) losses.append([gen_loss]) self.backward(gen_loss) self.update_params() if num % 50 == 0: loss = sum([l[0] for l in losses]) / len(losses) ppl = exp(loss) logger.info('gen loss is %f, ppl is %f' % (loss, ppl)) losses = [] num += 1 output_metrics_gen = self.val(epoch=i) _ = self.val(True, epoch=i) if best_val_gen < output_metrics_gen["ppl"]: patience += 1 logger.info('Patience = ', patience) if patience >= 5: gen_stop = True else: patience = 0 best_val_gen = output_metrics_gen["ppl"] self.model.save_model(self.opt['model_save_path']) logger.info( f"[generator model saved in {self.opt['model_save_path']}" "------------------------------------------------]") if gen_stop: break # train_output_file.close() # _ = self.val(is_test=True) def val(self, is_test=False, epoch=-1): # count是response数量 self.model.eval() if is_test: valid_processed_set = self.test_processed_set else: valid_processed_set = self.valid_processed_set val_set = CRSdataset(valid_processed_set, self.opt['n_entity'], self.opt['n_concept']) val_dataset_loader = torch.utils.data.DataLoader( dataset=val_set, batch_size=self.batch_size, shuffle=False) inference_sum = [] tf_inference_sum = [] golden_sum = [] # context_sum = [] losses = [] recs = [] for context, c_lengths, response, r_length, mask_response, mask_r_length, \ entity, entity_vector, movie, concept_mask, dbpedia_mask, concept_vec, db_vec, rec \ in tqdm(val_dataset_loader): with torch.no_grad(): seed_sets = [] batch_size = context.shape[0] for b in range(batch_size): seed_set = entity[b].nonzero().view(-1).tolist() seed_sets.append(seed_set) # 使用teacher force下的回复生成, _, tf_preds, _, _, gen_loss, mask_loss, info_db_loss, info_con_loss = \ self.model(context.to(self.device), response.to(self.device), mask_response.to(self.device), concept_mask, dbpedia_mask, \ seed_sets, movie, concept_vec, db_vec, entity_vector.to(self.device), rec, test=False) # 使用greedy模式下的回复生成,限定maxlen=20? # todo scores, preds, rec_scores, rec_loss, _, mask_loss, info_db_loss, info_con_loss = \ self.model(context.to(self.device), response.to(self.device), mask_response.to(self.device), concept_mask, dbpedia_mask, \ seed_sets, movie, concept_vec, db_vec, entity_vector.to(self.device), rec, test=True, maxlen=20, bsz=batch_size) golden_sum.extend(self.vector2sentence(response.cpu())) inference_sum.extend(self.vector2sentence(preds.cpu())) # tf_inference_sum.extend(self.vector2sentence(tf_preds.cpu())) # context_sum.extend(self.vector2sentence(context.cpu())) recs.extend(rec.cpu()) losses.append(torch.mean(gen_loss)) #logger.info(losses) #exit() subset = 'valid' if not is_test else 'test' # 原版: gen-loss来自teacher force,inference_sum来自greedy ppl = exp(sum(loss for loss in losses) / len(losses)) output_dict_gen = {'ppl': ppl} logger.info(f"{subset} set metrics = {output_dict_gen}") # logger.info(f"{subset} set gt metrics = {self.metrics_gt}") # f=open('context_test.txt','w',encoding='utf-8') # f.writelines([' '.join(sen)+'\n' for sen in context_sum]) # f.close() # 将生成的回复输出 with open(f"output/output_{subset}_gen_epoch_{epoch}.txt", 'w', encoding='utf-8') as f: f.writelines([ '[Generated] ' + re.sub('@\d+', '__UNK__', ' '.join(sen)) + '\n' for sen in inference_sum ]) # gt shuchu with open(f"output/output_{subset}_gt_epoch_{epoch}.txt", 'w', encoding='utf-8') as f: for sen in golden_sum: mask_sen = re.sub('@\d+', '__UNK__', ' '.join(sen)) mask_sen = re.sub(' ([!,.?])', '\\1', mask_sen) f.writelines(['[GT] ' + mask_sen + '\n']) # 将生成的回复与gt一起输出 with open(f"output/output_{subset}_both_epoch_{epoch}.txt", 'w', encoding='utf-8') as f: f.writelines(['[GroundTruth] ' + re.sub('@\d+', '__UNK__',' '.join(sen_gt))+'\n' \ + '[Generated] ' + re.sub('@\d+', '__UNK__',' '.join(sen_gen))+'\n\n' \ for sen_gt, sen_gen in zip(golden_sum, inference_sum)]) self.save_embedding() return output_dict_gen def save_embedding(self): json.dump(loop.dict, open('output/tf_bpe2index.json', 'w')) def vector2sentence(self, batch_sen): # 一个batch的sentence 从id换成token sentences = [] for sen in batch_sen.numpy().tolist(): sentence = [] for word in sen: if word > 3: sentence.append(self.index2word[word]) elif word == 3: sentence.append('_UNK_') sentences.append(sentence) return sentences @classmethod def optim_opts(self): """ Fetch optimizer selection. By default, collects everything in torch.optim, as well as importing: - qhm / qhmadam if installed from github.com/facebookresearch/qhoptim Override this (and probably call super()) to add your own optimizers. """ # first pull torch.optim in optims = { k.lower(): v for k, v in optim.__dict__.items() if not k.startswith('__') and k[0].isupper() } try: import apex.optimizers.fused_adam as fused_adam optims['fused_adam'] = fused_adam.FusedAdam except ImportError: pass try: # https://openreview.net/pdf?id=S1fUpoR5FQ from qhoptim.pyt import QHM, QHAdam optims['qhm'] = QHM optims['qhadam'] = QHAdam except ImportError: # no QHM installed pass logger.info(optims) return optims def init_optim(self, params, optim_states=None, saved_optim_type=None): """ Initialize optimizer with model parameters. :param params: parameters from the model :param optim_states: optional argument providing states of optimizer to load :param saved_optim_type: type of optimizer being loaded, if changed will skip loading optimizer states """ opt = self.opt # set up optimizer args lr = opt['learningrate'] kwargs = {'lr': lr} # kwargs['amsgrad'] = True # kwargs['betas'] = (0.9, 0.999) optim_class = self.optim_opts()[opt['optimizer']] logger.info(f'optim_class = {optim_class}') self.optimizer = optim_class(params, **kwargs) def backward(self, loss): """ Perform a backward pass. It is recommended you use this instead of loss.backward(), for integration with distributed training and FP16 training. """ loss.backward() def update_params(self): """ Perform step of optimization, clipping gradients and adjusting LR schedule if needed. Gradient accumulation is also performed if agent is called with --update-freq. It is recommended (but not forced) that you call this in train_step. """ update_freq = 1 if update_freq > 1: # we're doing gradient accumulation, so we don't only want to step # every N updates instead self._number_grad_accum = (self._number_grad_accum + 1) % update_freq if self._number_grad_accum != 0: return #0.1是不是太小了,原版就是这样 if self.opt['gradient_clip'] > 0: torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.opt['gradient_clip']) self.optimizer.step() def zero_grad(self): """ Zero out optimizer. It is recommended you call this in train_step. It automatically handles gradient accumulation if agent is called with --update-freq. """ self.optimizer.zero_grad()