Esempio n. 1
0
    def build_model(self):
        """
        Instantiates the model, loss criterion, and optimizer
        """

        # instantiate model
        self.model = VGGNet(self.config, self.use_batch_norm,
                            self.input_channels, self.class_count,
                            self.init_weights)

        # instantiate loss criterion
        self.criterion = nn.CrossEntropyLoss()

        # instantiate optimizer
        self.optimizer = optim.SGD(self.model.parameters(),
                                   lr=self.lr,
                                   momentum=self.momentum,
                                   weight_decay=self.weight_decay)

        # print network
        self.print_network(self.model, 'VGGNet')

        # use gpu if enabled
        if torch.cuda.is_available() and self.use_gpu:
            self.model.cuda()
            self.criterion.cuda()
Esempio n. 2
0
def train(**kwargs):
    cfg = Config()
    for k, v in kwargs.items():
        setattr(cfg, k, v)

    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
    ])

    content = load_image(cfg.content, transform, max_size=cfg.max_size)
    style = load_image(cfg.style,
                       transform,
                       shape=[content.size(3),
                              content.size(2)])

    target = Variable(content.clone(), requires_grad=True)
    optimizer = torch.optim.Adam([target], lr=cfg.lr, betas=[0.5, 0.999])

    vgg = VGGNet()
    if cfg.use_gpu:
        vgg.cuda()

    for step in range(cfg.total_step):
        target_features = vgg(target)
        content_features = vgg(Variable(content))
        style_features = vgg(Variable(style))

        style_loss = 0
        content_loss = 0
        for f1, f2, f3 in zip(target_features, content_features,
                              style_features):
            # Compute content loss
            content_loss += torch.mean((f1 - f2)**2)
            _, c, h, w = f1.size()
            f1 = f1.view(c, h * w)
            f3 = f3.view(c, h * w)
            # Compute gram matrix
            f1 = torch.mm(f1, f1.t())
            f3 = torch.mm(f3, f3.t())
            style_loss += torch.mean((f1 - f3)**2) / (c * h * w)

        loss = content_loss + cfg.style_weight * style_loss
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if (step + 1) % cfg.log_step == 0:
            print('Step [%d/%d], Content Loss: %.4f, Style Loss: %.4f' %
                  (step + 1, cfg.total_step, content_loss.data[0],
                   style_loss.data[0]))

        if (step + 1) % cfg.sample_step == 0:
            denorm = transforms.Normalize((-2.12, -2.04, -1.80),
                                          (4.37, 4.46, 4.44))
            img = target.clone().cpu().squeeze()
            img = denorm(img.data).clamp_(0, 1)
            torchvision.utils.save_image(img, 'output-%d.png' % (step + 1))
Esempio n. 3
0
def train():
    db = './public/cards/trainImg'
    img_list = get_imlist(db, '.jpg')

    model = VGGNet()
    feats = []
    names = []
    for i, img_path in enumerate(img_list):
        norm_feat = model.extract_feat(img_path)
        img_name = os.path.split(img_path)[1]
        feats.append(norm_feat)
        names.append(img_name)
        print("extracting feature from image No. %d , %d images in total" %
              ((i+1), len(img_list)))

    feats = np.array(feats)
    output = './src/vis/model/model.h5'

    h5f = h5py.File(output, 'w')
    h5f.create_dataset('dataset_1', data=feats)
    h5f.create_dataset('dataset_2', data=np.string_(names))
    h5f.close()
Esempio n. 4
0
def predict(img_path, weights_path, class_indices_path):
    """
    对图像进行预测分类
    :param img_path: 待预测图像路径
    :param weights_path: 模型权重路径
    :param class_indices_path: 标签类别索引
    :return: 待预测图像类别
    """
    img_height = img_width = 224

    # 加载待预测图像
    img = Image.open(img_path)
    # 重设图像大小
    img = img.resize((img_width, img_height))
    plt.imshow(img)

    # 归一化
    img = np.array(img) / 255.

    # 增加batch这个维度
    img = (np.expand_dims(img, 0))

    # 加载标签类别索引文件
    try:
        json_file = open(class_indices_path, 'r')
        class_indict = json.load(json_file)
    except Exception as e:
        print(e)
        exit(-1)

    # 预测
    model = VGGNet(img_height, img_width, class_num=5, name='vgg11').vgg()
    model.load_weights(weights_path)
    result = np.squeeze(model.predict(img))
    predict_class = np.argmax(result)
    label = class_indict[str(predict_class)], result[predict_class]
    plt.title(label)
    plt.show()
from PIL import ImageEnhance
import paddle.fluid as fluid
from multiprocessing import cpu_count
import matplotlib.pyplot as plt
from data_processor import train_parameters
from data_processor import *
from model import VGGNet

'''
模型训练
'''
# with fluid.dygraph.guard(place = fluid.CUDAPlace(0)):
with fluid.dygraph.guard():
    print(train_parameters['class_dim'])
    print(train_parameters['label_dict'])
    vgg = VGGNet()
    optimizer = fluid.optimizer.AdamOptimizer(learning_rate=train_parameters['learning_strategy']['lr'],
                                              parameter_list=vgg.parameters())
    for epoch_num in range(train_parameters['num_epochs']):
        for batch_id, data in enumerate(train_reader()):
            dy_x_data = np.array([x[0] for x in data]).astype('float32')
            y_data = np.array([x[1] for x in data]).astype('int64')
            y_data = y_data[:, np.newaxis]

            # 将Numpy转换为DyGraph接收的输入
            img = fluid.dygraph.to_variable(dy_x_data)
            label = fluid.dygraph.to_variable(y_data)

            out, acc = vgg(img, label)
            loss = fluid.layers.cross_entropy(out, label)
            avg_loss = fluid.layers.mean(loss)
Esempio n. 6
0
from model import VGGNet

batch_size=32

train_transforms = transforms.Compose([

        transforms.Resize(224),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

test_dir = './Atestdataset'
test_datasets = datasets.ImageFolder(test_dir, transform=train_transforms)
test_dataloader = torch.utils.data.DataLoader(test_datasets, batch_size=batch_size, shuffle=True)

model = VGGNet()
model.load_state_dict(torch.load('./Vgg16.pth',map_location=torch.device('cpu')))
for epoch in range(1):
    model = model.eval()
    total = 0
    correct = 0
    for i, data in enumerate(test_dataloader):
        images, labels = data
        vggoutputs = model(images)
        _, vggpredicted = torch.max(vggoutputs.data, 1)
        #print(labels)
        #print(vggpredicted)
        total += labels.size(0)
        correct += (vggpredicted == labels).sum().item()
    print(100.0 * correct / total)
Esempio n. 7
0
def run(model_name):

    train_dir = '../flower_data/train'
    validation_dir = '../flower_data/validation'

    if not os.path.exists('../save_weights'):
        os.mkdir('../save_weights')

    img_height, img_width = 224, 224
    batch_size = 32
    epochs = 10

    # 准备训练集和验证集
    train_image_generator = ImageDataGenerator(rescale=1. / 255, horizontal_flip=True)
    validation_image_generator = ImageDataGenerator(rescale=1. / 255)
    train_data_gen = train_image_generator.flow_from_directory(directory=train_dir,
                                                               batch_size=batch_size,
                                                               shuffle=True,
                                                               target_size=(img_height, img_width),
                                                               class_mode='categorical')
    valid_data_gen = validation_image_generator.flow_from_directory(directory=validation_dir,
                                                                    batch_size=batch_size,
                                                                    shuffle=False,
                                                                    target_size=(img_height, img_width),
                                                                    class_mode='categorical')
    # 训练样本数和验证样本数
    total_train, total_valid = train_data_gen.n, valid_data_gen.n

    # 生成标签索引字典
    class_indices = train_data_gen.class_indices
    inverse_dict = dict((v, k) for k, v in class_indices.items())
    json_str = json.dumps(inverse_dict, indent=4)
    with open('../class_indices.json', 'w') as json_file:
        json_file.write(json_str)

    # 训练模型
    model = VGGNet(img_height, img_width, class_num=5, name=model_name).vgg()
    model.summary()
    model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0005),
                  loss=tf.keras.losses.CategoricalCrossentropy(from_logits=False),
                  metrics=['accuracy'])

    callbacks = [tf.keras.callbacks.ModelCheckpoint(filepath=f'../save_weights/{model_name}.h5',
                                                    save_best_only=True,
                                                    save_weights_only=True,
                                                    monitor='val_loss')]
    history = model.fit(x=train_data_gen,
                        steps_per_epoch=total_train // batch_size,
                        epochs=epochs,
                        validation_data=valid_data_gen,
                        validation_steps=total_valid // batch_size,
                        callbacks=callbacks)

    # 评估模型
    # plot loss and accuracy image
    history_dict = history.history
    train_loss = history_dict["loss"]
    train_accuracy = history_dict["accuracy"]
    val_loss = history_dict["val_loss"]
    val_accuracy = history_dict["val_accuracy"]

    # figure 1
    plt.figure()
    plt.plot(range(epochs), train_loss, label='train_loss')
    plt.plot(range(epochs), val_loss, label='val_loss')
    plt.legend()
    plt.xlabel('epochs')
    plt.ylabel('loss')

    # figure 2
    plt.figure()
    plt.plot(range(epochs), train_accuracy, label='train_accuracy')
    plt.plot(range(epochs), val_accuracy, label='val_accuracy')
    plt.legend()
    plt.xlabel('epochs')
    plt.ylabel('accuracy')
    plt.show()
def train(cfg):
    n_class = int(cfg["data"]["n_class"])
    img_h = int(cfg["data"]["img_h"])
    img_w = int(cfg["data"]["img_w"])
    batch_size = int(cfg["training"]["batch_size"])
    epochs = int(cfg["training"]["epochs"])
    lr = float(cfg["training"]["optimizer"]["lr"])
    momentum = float(cfg["training"]["optimizer"]["momentum"])
    w_decay = float(cfg["training"]["optimizer"]["weight_decay"])
    step_size = int(cfg["training"]["lr_schedule"]["step_size"])
    gamma = float(cfg["training"]["lr_schedule"]["gamma"])
    configs = "FCNs-BCEWithLogits_batch{}_epoch{}_RMSprop_scheduler-step{}-gamma{}_lr{}_momentum{}_w_decay{}_input_size{}_03091842".format(
        batch_size, epochs, step_size, gamma, lr, momentum, w_decay, img_h)
    print("Configs:", configs)

    root_dir = cfg["data"]["root_dir"]
    train_filename = cfg["data"]["train_file"]
    val_filename = cfg["data"]["val_file"]
    mean_filename = cfg["data"]["mean_file"]
    class_weight_filename = cfg["data"]["class_weight_file"]

    train_file = os.path.join(root_dir, train_filename)
    print(train_file)
    val_file = os.path.join(root_dir, val_filename)
    mean_file = os.path.join(root_dir, mean_filename)
    class_weight_file = os.path.join(root_dir, class_weight_filename)
    model_dir = cfg["training"]["model_dir"]
    if not os.path.exists(model_dir):
        os.makedirs(model_dir)
    model_path = os.path.join(model_dir, configs)

    use_gpu = torch.cuda.is_available()
    num_gpu = list(range(torch.cuda.device_count()))

    continue_train = False
    #MeanRGB_train = ComputeMeanofInput(train_file)
    #MeanRGB_train = np.load(mean_file)
    MeanRGB_train = np.array([0.0, 0.0, 0.0])
    print("MeanRGB_train: {}".format(MeanRGB_train))
    train_data = ScanNet2d(csv_file=train_file,
                           phase='train',
                           trainsize=(img_h, img_w),
                           MeanRGB=MeanRGB_train)
    val_data = ScanNet2d(csv_file=val_file,
                         phase='val',
                         trainsize=(img_h, img_w),
                         MeanRGB=MeanRGB_train)

    train_loader = DataLoader(train_data,
                              batch_size=batch_size,
                              shuffle=True,
                              num_workers=1)
    val_loader = DataLoader(val_data,
                            batch_size=batch_size,
                            shuffle=False,
                            num_workers=1)

    #class_weight = trainer.computer_class_weights(train_file)
    class_weight = np.load(class_weight_file)
    print("class_weight: {}".format(class_weight))
    class_weight = torch.from_numpy(class_weight)
    print("shape of class weight {}".format(class_weight.shape))
    vgg_model = VGGNet(requires_grad=True, remove_fc=True)
    fcn_model = FCN8s(encoder_net=vgg_model, n_class=n_class)

    if use_gpu:
        ts = time.time()
        vgg_model = vgg_model.cuda()
        fcn_model = fcn_model.cuda()
        fcn_model = nn.DataParallel(fcn_model, device_ids=num_gpu)
        class_weight = class_weight.cuda()
        print("Finish cuda loading, tme elapsed {}".format(time.time() - ts))

    L = nn.BCEWithLogitsLoss(reduction='none')
    optimizer = optim.RMSprop(fcn_model.parameters(),
                              lr=lr,
                              momentum=momentum,
                              weight_decay=w_decay)
    #optimizer = optim.SGD(fcn_model.parameters(), lr=lr, momentum= momentum, weight_decay=w_decay)
    scheduler = lr_scheduler.StepLR(optimizer,
                                    step_size=step_size,
                                    gamma=gamma)

    score_dir = os.path.join("scores", configs)
    if not os.path.exists(score_dir):
        os.makedirs(score_dir)

    log_headers = [
        'epoch', 'train/loss', 'train/acc', 'train/acc_cls', 'train/mean_iu',
        'train/fwavacc', 'val/loss', 'val/acc', 'val/acc_cls', 'val/mean_iu',
        'val/fwavacc', 'elapsed_time'
    ]
    if not os.path.exists(os.path.join(score_dir, 'log.csv')):
        with open(os.path.join(score_dir, 'log.csv'), 'w') as f:
            f.write(','.join(log_headers) + '\n')

    IU_scores = np.zeros((epochs, n_class + 1))
    pixel_scores = np.zeros(epochs)
    writer = SummaryWriter()
    # color_mapping = util.GenerateColorMapping(n_class)
    best_mean_iu = 0
    epoch_loss = 0.0
    if continue_train:
        model_path = "C:\\Users\\ji\\Documents\\FCN-VGG16\\models\\FCNs-BCEWithLogits_batch1_epoch500_RMSprop_scheduler-step50-gamma0.5_lr0.0001_momentum0.0_w_decay1e-05"
        fcn_model = torch.load(model_path)
        fcn_model.train()
    for epoch in range(epochs):

        fcn_model.train()
        scheduler.step()
        ts = time.time()
        running_loss = 0.0
        ######
        label_preds = []
        label_trues = []
        ######
        for i, batch in enumerate(train_loader):
            optimizer.zero_grad()

            if use_gpu:
                inputs = Variable(batch['X'].cuda())
                labels = Variable(batch['Y'].cuda())
            else:
                inputs, labels = Variable(batch['X']), Variable(batch['Y'])

            outputs = fcn_model(inputs)
            #print("out: {}".format(outputs.shape))
            #print("label: {}".format(labels.shape))
            #print(outputs)
            #print(labels)
            loss = L(outputs, labels)
            # print(loss.shape)
            loss = loss.permute(0, 2, 3,
                                1).reshape(-1,
                                           n_class + 1)  #.view(-1,n_class+1)
            # print(loss.shape)
            loss = torch.mean(loss, dim=0)
            # print(loss.shape)
            loss = torch.mul(loss, class_weight)
            # print(loss.shape)
            loss = torch.mean(loss)
            # print(loss)
            loss.backward()
            # print("grad")
            # print(fcn_model.outp.weight.grad)
            # print(fcn_model.embs[0].weight.grad)
            optimizer.step()
            #scheduler.step()

            if i == 0 and epoch == 0:
                # count= util.count_parameters(fcn_model)
                # print("number of parameters in model {}".format(count))
                visIn = inputs[:3]
                #print('shape of in {}'.format(visIn[:5].shape))
                visLabel = batch['l'][:3]
            epoch_loss += loss.item()
            running_loss += loss.item()
            # print("loss: {}".format(loss.data))
            if i % 10 == 9 and i != 0:
                print("epoch{}, iter{}, Iterloss: {}".format(
                    epoch, i, running_loss / 10))
                writer.add_scalar('train/iter_loss', running_loss / 10,
                                  epoch * len(train_loader) + i)
                running_loss = 0.0
                # N, _, h, w = outputs.shape
                # targets = batch['l'].cpu().numpy().reshape(N,h,w)
                # outputs = outputs.data.cpu().numpy()
                # preds_v, targets_v = util.visulaize_output(outputs,targets,color_mapping,n_class)
                # writer.add_images('train/predictions',torch.from_numpy(preds_v),dataformats='NHWC')

                # writer.add_images('train/targets',torch.from_numpy(targets_v),dataformats='NHWC')
            #####################################
            outputs = outputs.data.cpu().numpy()
            N, _, h, w = outputs.shape
            pred = outputs.transpose(0, 2, 3, 1).reshape(
                -1, n_class + 1).argmax(axis=1).reshape(N, h, w)
            target = batch['l'].cpu().numpy().reshape(N, h, w)
            #########
            for lt, lp in zip(target, pred):
                label_trues.append(lt)
                label_preds.append(lp)

        metrics = util.label_accuracy_score(label_trues, label_preds,
                                            n_class + 1)
        with open(os.path.join(score_dir, "log.csv"), 'a') as f:
            log = [epoch] + [epoch_loss] + list(metrics) + [''] * 7
            log = map(str, log)
            f.write(','.join(log) + '\n')
        ########################################
        #scheduler.step()

        writer.add_scalar('train/epoch_loss', epoch_loss, epoch)
        print("Finish epoch{}, epoch loss {}, time eplapsed {}".format(
            epoch, epoch_loss,
            time.time() - ts))
        epoch_loss = 0.0
        ####################
        writer.add_scalar('train/mean_iu', metrics[2], epoch)
        writer.add_scalar('train/acc', metrics[0], epoch)
        writer.add_scalar('train/acc_cls', metrics[1], epoch)
        ######################
        #Training precess visulize
        visOut = fcn_model(visIn)
        preds_v, targets_v = util.visulaize_output(visOut, visLabel, n_class)
        writer.add_images('train/predictions',
                          torch.from_numpy(preds_v),
                          global_step=epoch,
                          dataformats='NHWC')
        writer.add_images('train/targets',
                          torch.from_numpy(targets_v),
                          global_step=epoch,
                          dataformats='NHWC')

        if not os.path.exists(model_path):
            os.makedirs(model_path)

        torch.save(fcn_model, os.path.join(model_path, str(epoch)))
        best_mean_iu = val_model(epoch, val_loader, fcn_model, use_gpu,
                                 n_class, IU_scores, pixel_scores, score_dir,
                                 writer, best_mean_iu, model_path, L)

    writer.flush()
    writer.close()
Esempio n. 9
0
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
from dataset import CityScapeDataset
from model import FCNs, VGGNet
from torchvision import transforms, utils
from torch import Tensor
from labels import *

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
batch_size, n_class, h, w = 1, 19, 480, 320
vgg_model = VGGNet(requires_grad=True)
fcn_model = FCNs(pretrained_net=vgg_model, n_class=n_class).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(fcn_model.parameters(), lr=1e-3, momentum=0.9)

preprocess = transforms.Compose([
    # transforms.Scale(256),
    # transforms.ToTensor(),
    # normalize
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
])
dataset = CityScapeDataset('.\\data', (h, w),
                           transform=preprocess,
                           target_transform=transforms.RandomHorizontalFlip())

img, label = dataset[0]

Esempio n. 10
0
import tensorflow as tf
from model import VGGNet
import numpy as np
from data_loader import DataLoader
import time

ckpt_path = '../ckpt/model_0.ckpt'
net = VGGNet([224, 224], 128, training=False)
net.build()

sess = tf.Session()
saver = tf.train.Saver(tf.global_variables(), max_to_keep=None)

# config = tf.ConfigProto()
# config.gpu_options.per_process_gpu_memory_fraction = 0.7

if ckpt_path:
    saver.restore(sess, ckpt_path)
loader = DataLoader()
batch = 64
valid_batch_num = loader.valid_urls.shape[0] // batch

cou = 1
# for idx in range(valid_batch_num):
#     res = loader.get_valid_batch_data(batch)
#     feed_dicts = {net.inputs: res[0], net.ground_truth: res[1]}
#     # sess.run(optimizer, feed_dict=feed_dicts)
#     fc_16 = sess.run([net.fc_16], feed_dict=feed_dicts)
#     fc_16 = np.array(fc_16[0])
#     for i in range(batch):
#         if np.argmax(fc_16[i, :]) == np.argmax([res[1][i, :]]):
Esempio n. 11
0
import torch
import torch.nn as nn
import torch.optim as optim
from model import VGGNet, VGG_CONFS

MODEL_PATH = 'models/checkpoint_e49.pkl'
SAMPLE_IMG_PATH = ''
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

cpt = torch.load(MODEL_PATH, map_location=device)
epoch = cpt['epoch']
seed = cpt['seed']
total_steps = cpt['total_steps']
# make even this the same...
vgg16 = nn.parallel.DataParallel(
    VGGNet(VGG_CONFS['vgg16'], dim=32, num_classes=10))
vgg16.load_state_dict(cpt['model'])
print(vgg16)

# test loading optimizer
optimizer = optim.SGD(vgg16.parameters(),
                      lr=0.0001,
                      weight_decay=0.00005,
                      momentum=0.9).load_state_dict(cpt['optimizer'])
Esempio n. 12
0
                                          download=True)
test_dataset = torchvision.datasets.SVHN(root='../data',
                                         split='test',
                                         transform=transforms.ToTensor(),
                                         download=True)

# Data loader
train_data_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                                batch_size=batch_size,
                                                shuffle=True)
test_data_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                               batch_size=batch_size,
                                               shuffle=False)

if sys.argv[1] == 'vgg':
    model = VGGNet()
elif sys.argv[1] == 'mobile':
    model = MobileNet()
elif sys.argv[1] == 'custom':
    model = CifarClassifier()
else:
    raise ValueError(f'Unknown network type {sys.argv[1]}')
model.cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
loss_fn = nn.CrossEntropyLoss()

for epoch in range(num_epochs):
    for i, (x, x_class) in enumerate(train_data_loader):
        # Forward pass
        x = x.cuda()  #.view(-1, img_size)
        class_logits = model(x)
Esempio n. 13
0
                                download=True,
                                transform=transforms.Compose([
                                    transforms.RandomHorizontalFlip(),
                                    transforms.RandomResizedCrop(32,
                                                                 scale=(0.8,
                                                                        1.0)),
                                    transforms.ToTensor(),
                                    normalize,
                                ]))
print('Dataset created - size: {}'.format(len(dataset)))

seed = torch.initial_seed()
print('Using seed : {}'.format(seed))

# create model & train on multiple GPUs
vggnet = VGGNet(VGG_CONFS[MODEL_TYPE], dim=IMAGE_DIM,
                num_classes=NUM_CLASSES).to(device)
vggnet = torch.nn.parallel.DataParallel(vggnet, device_ids=DEVICE_IDS)
print(vggnet)
print('VGGNet created')

dataloader = data.DataLoader(dataset,
                             shuffle=True,
                             pin_memory=True,
                             drop_last=True,
                             num_workers=4,
                             batch_size=BATCH_SIZE)
print('Dataloader created')

# create optimizer
optimizer = optim.SGD(params=vggnet.parameters(),
                      lr=LR_INIT,
from model import VGGNet
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping
import numpy as np

data = np.load("train_val_test.npz")
train_X, train_Y, val_X, val_Y, test_X, test_Y = data["arr_0"], data[
    "arr_1"], data["arr_2"], data["arr_3"], data["arr_4"], data["arr_5"]

vgg = VGGNet()
model = vgg.build()
opt = Adam(lr=1e-3)
early_stop = EarlyStopping(monitor='val_loss', patience=5)
model.compile(loss="categorical_crossentropy",
              optimizer=opt,
              metrics=["accuracy"])
history = model.fit(train_X,
                    train_Y,
                    epochs=30,
                    validation_data=(val_X, val_Y),
                    callbacks=[early_stop])

model.save("model.h5")
Esempio n. 15
0
from PIL import Image
from PIL import ImageEnhance
import paddle.fluid as fluid
from multiprocessing import cpu_count
import matplotlib.pyplot as plt
from model import VGGNet
from data_processor import *



'''
模型校验
'''
with fluid.dygraph.guard():
    model, _ = fluid.load_dygraph("vgg")
    vgg = VGGNet()
    vgg.load_dict(model)
    vgg.eval()
    accs = []
    for batch_id, data in enumerate(eval_reader()):
        dy_x_data = np.array([x[0] for x in data]).astype('float32')
        y_data = np.array([x[1] for x in data]).astype('int')
        y_data = y_data[:, np.newaxis]

        img = fluid.dygraph.to_variable(dy_x_data)
        label = fluid.dygraph.to_variable(y_data)

        out, acc = vgg(img, label)
        lab = np.argsort(out.numpy())
        accs.append(acc.numpy()[0])
print(np.mean(accs))
Esempio n. 16
0
import tensorflow as tf
import sys
from model import VGGNet
from data_loader import DataLoader
net = VGGNet([224, 224], 128)
net.build()
loss = net.loss()
# print(tf.global_variables())
ckpt_path = '../ckpt/model.ckpt-0'

loader = DataLoader()

sess = tf.Session()
optimizer = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(loss)
saver = tf.train.Saver(tf.global_variables(), max_to_keep=None)

ls = tf.summary.scalar('loss', loss)

train_writer = tf.summary.FileWriter('../log_train', sess.graph)
valid_writer = tf.summary.FileWriter('../log_valid', sess.graph)

batch = 32
batch_num = loader.images_urls.shape[0] // batch
# config = tf.ConfigProto()
# config.gpu_options.per_process_gpu_memory_fraction = 0.7
valid_batch_num = loader.valid_urls.shape[0] // batch

if ckpt_path:
    saver.restore(sess, ckpt_path)
else:
    sess.run(tf.global_variables_initializer())
Esempio n. 17
0
class Solver(object):

    DEFAULTS = {}

    def __init__(self, version, data_loader, config, output_txt):
        """
        Initializes a Solver object
        """

        # data loader
        self.__dict__.update(Solver.DEFAULTS, **config)
        self.version = version
        self.data_loader = data_loader
        self.output_txt = output_txt

        self.build_model()

        # start with a pre-trained model
        if self.pretrained_model:
            self.load_pretrained_model()

    def build_model(self):
        """
        Instantiates the model, loss criterion, and optimizer
        """

        # instantiate model
        self.model = VGGNet(self.config, self.use_batch_norm,
                            self.input_channels, self.class_count,
                            self.init_weights)

        # instantiate loss criterion
        self.criterion = nn.CrossEntropyLoss()

        # instantiate optimizer
        self.optimizer = optim.SGD(self.model.parameters(),
                                   lr=self.lr,
                                   momentum=self.momentum,
                                   weight_decay=self.weight_decay)

        # print network
        self.print_network(self.model, 'VGGNet')

        # use gpu if enabled
        if torch.cuda.is_available() and self.use_gpu:
            self.model.cuda()
            self.criterion.cuda()

    def print_network(self, model, name):
        """
        Prints the structure of the network and the total number of parameters
        """
        num_params = 0
        for p in model.parameters():
            num_params += p.numel()
        write_print(self.output_txt, name)
        write_print(self.output_txt, str(model))
        write_print(self.output_txt,
                    'The number of parameters: {}'.format(num_params))

    def load_pretrained_model(self):
        """
        loads a pre-trained model from a .pth file
        """
        self.model.load_state_dict(
            torch.load(
                os.path.join(self.model_save_path,
                             '{}.pth'.format(self.pretrained_model))))
        write_print(self.output_txt,
                    'loaded trained model {}'.format(self.pretrained_model))

    def print_loss_log(self, start_time, iters_per_epoch, e, i, loss):
        """
        Prints the loss and elapsed time for each epoch
        """
        total_iter = self.num_epochs * iters_per_epoch
        cur_iter = e * iters_per_epoch + i

        elapsed = time.time() - start_time
        total_time = (total_iter - cur_iter) * elapsed / (cur_iter + 1)
        epoch_time = (iters_per_epoch - i) * elapsed / (cur_iter + 1)

        epoch_time = str(datetime.timedelta(seconds=epoch_time))
        total_time = str(datetime.timedelta(seconds=total_time))
        elapsed = str(datetime.timedelta(seconds=elapsed))

        log = "Elapsed {}/{} -- {}, Epoch [{}/{}], Iter [{}/{}], " \
              "loss: {:.4f}".format(elapsed,
                                    epoch_time,
                                    total_time,
                                    e + 1,
                                    self.num_epochs,
                                    i + 1,
                                    iters_per_epoch,
                                    loss)

        write_print(self.output_txt, log)

    def save_model(self, e):
        """
        Saves a model per e epoch
        """
        path = os.path.join(self.model_save_path,
                            '{}/{}.pth'.format(self.version, e + 1))

        torch.save(self.model.state_dict(), path)

    def model_step(self, images, labels):
        """
        A step for each iteration
        """

        # set model in training mode
        self.model.train()

        # empty the gradients of the model through the optimizer
        self.optimizer.zero_grad()

        # forward pass
        output = self.model(images)

        # compute loss
        loss = self.criterion(output, labels.squeeze())

        # compute gradients using back propagation
        loss.backward()

        # update parameters
        self.optimizer.step()

        # return loss
        return loss

    def train(self):
        """
        Training process
        """
        self.losses = []
        self.top_1_acc = []
        self.top_5_acc = []

        iters_per_epoch = len(self.data_loader)

        # start with a trained model if exists
        if self.pretrained_model:
            start = int(self.pretrained_model.split('/')[-1])
        else:
            start = 0

        # start training
        start_time = time.time()
        for e in range(start, self.num_epochs):
            for i, (images, labels) in enumerate(tqdm(self.data_loader)):
                images = to_var(images, self.use_gpu)
                labels = to_var(torch.LongTensor(labels), self.use_gpu)

                loss = self.model_step(images, labels)

            # print out loss log
            if (e + 1) % self.loss_log_step == 0:
                self.print_loss_log(start_time, iters_per_epoch, e, i, loss)
                self.losses.append((e, loss))

            # save model
            if (e + 1) % self.model_save_step == 0:
                self.save_model(e)

            # evaluate on train dataset
            # if (e + 1) % self.train_eval_step == 0:
            #     top_1_acc, top_5_acc = self.train_evaluate(e)
            #     self.top_1_acc.append((e, top_1_acc))
            #     self.top_5_acc.append((e, top_5_acc))

        # print losses
        write_print(self.output_txt, '\n--Losses--')
        for e, loss in self.losses:
            write_print(self.output_txt, str(e) + ' {:.4f}'.format(loss))

        # print top_1_acc
        write_print(self.output_txt, '\n--Top 1 accuracy--')
        for e, acc in self.top_1_acc:
            write_print(self.output_txt, str(e) + ' {:.4f}'.format(acc))

        # print top_5_acc
        write_print(self.output_txt, '\n--Top 5 accuracy--')
        for e, acc in self.top_5_acc:
            write_print(self.output_txt, str(e) + ' {:.4f}'.format(acc))

    def eval(self, data_loader):
        """
        Returns the count of top 1 and top 5 predictions
        """

        # set the model to eval mode
        self.model.eval()

        top_1_correct = 0
        top_5_correct = 0
        total = 0

        with torch.no_grad():
            for images, labels in data_loader:

                images = to_var(images, self.use_gpu)
                labels = to_var(torch.LongTensor(labels), self.use_gpu)

                output = self.model(images)
                total += labels.size()[0]

                # top 1
                # get the max for each instance in the batch
                _, top_1_output = torch.max(output.data, dim=1)

                top_1_correct += torch.sum(
                    torch.eq(labels.squeeze(), top_1_output))

                # top 5
                _, top_5_output = torch.topk(output.data, k=5, dim=1)
                for i, label in enumerate(labels):
                    if label in top_5_output[i]:
                        top_5_correct += 1

        return top_1_correct.item(), top_5_correct, total

    def train_evaluate(self, e):
        """
        Evaluates the performance of the model using the train dataset
        """
        top_1_correct, top_5_correct, total = self.eval(self.data_loader)
        log = "Epoch [{}/{}]--top_1_acc: {:.4f}--top_5_acc: {:.4f}".format(
            e + 1, self.num_epochs, top_1_correct / total,
            top_5_correct / total)
        write_print(self.output_txt, log)
        return top_1_correct / total, top_5_correct / total

    def test(self):
        """
        Evaluates the performance of the model using the test dataset
        """
        top_1_correct, top_5_correct, total = self.eval(self.data_loader)
        log = "top_1_acc: {:.4f}--top_5_acc: {:.4f}".format(
            top_1_correct / total, top_5_correct / total)
        write_print(self.output_txt, log)
Esempio n. 18
0
size = np.array(content_image.size) * scale
content_image = content_image.resize(size.astype(int), Image.ANTIALIAS)
content_image = transform(content_image).unsqueeze(0).cuda()

# Style Image processing
style_image = Image.open(style_image)
style_image = style_image.resize(
    [content_image.size(2), content_image.size(3)], Image.LANCZOS)
style_image = transform(style_image).unsqueeze(0).cuda()

# Initialize result and optimizer
result_image = Variable(content_image.clone(), requires_grad=True)
optimizer = torch.optim.Adam([result_image], lr=0.003, betas=[0.5, 0.999])

# Model
vgg = VGGNet()
vgg = vgg.cuda()

# Train
for step in range(epochs):

    target_features = vgg(result_image)
    content_features = vgg(Variable(content_image))
    style_features = vgg(Variable(style_image))

    style_loss = 0
    content_loss = 0
    for f1, f2, f3 in zip(target_features, content_features, style_features):

        # Content loss
        content_loss += torch.mean((f1 - f2)**2)
Esempio n. 19
0
def main():
    # 生成一个图像,均值为127.5,方差为20
    result = initial_result((1, 466, 712, 3), 127.5, 20)

    # 读取内容图像和风格图像
    content_val = read_img(content_img_path)
    style_val = read_img(style_img_path)

    content = tf.placeholder(tf.float32, shape=[1, 466, 712, 3])
    style = tf.placeholder(tf.float32, shape=[1, 615, 500, 3])

    # 载入模型,注意:在python3中,需要添加一句: encoding='latin1'
    data_dict = np.load(vgg_16_npy_pyth, encoding='latin1').item()

    # 创建这三张图像的 vgg 对象
    vgg_for_content = VGGNet(data_dict)
    vgg_for_style = VGGNet(data_dict)
    vgg_for_result = VGGNet(data_dict)

    # 创建每个神经网络
    vgg_for_content.build(content)
    vgg_for_style.build(style)
    vgg_for_result.build(result)

    # 提取哪些层特征
    # 需要注意的是:内容特征抽取的层数和结果特征抽取的层数必须相同
    # 风格特征抽取的层数和结果特征抽取的层数必须相同
    content_features = [
        # vgg_for_content.conv1_2,
        # vgg_for_content.conv2_2,
        # vgg_for_content.conv3_3,
        vgg_for_content.conv4_3,
        vgg_for_content.conv5_3,
    ]

    result_content_features = [
        # vgg_for_result.conv1_2,
        # vgg_for_result.conv2_2,
        # vgg_for_result.conv3_3,
        vgg_for_result.conv4_3,
        vgg_for_result.conv5_3,
    ]

    style_features = [
        vgg_for_style.conv2_2,
    ]

    result_style_features = [
        vgg_for_result.conv2_2,
    ]

    style_gram = [gram_matrix(feature) for feature in style_features]
    result_style_gram = [
        gram_matrix(feature) for feature in result_style_features
    ]

    # 计算内容损失
    content_loss = tf.zeros(1, tf.float32)
    for c, c_ in zip(content_features, result_content_features):
        content_loss += tf.reduce_mean((c - c_)**2, axis=[1, 2, 3])

    # 计算风格损失
    style_loss = tf.zeros(1, tf.float32)
    for s, s_ in zip(style_gram, result_style_gram):
        # 因为在计算gram矩阵的时候,降低了一维,所以,只需要在[1, 2]两个维度求均值即可
        style_loss += tf.reduce_mean((s - s_)**2, axis=[1, 2])

    # 总的损失函数
    loss = content_loss * lambda_c + style_loss * lambda_s

    train_op = tf.train.AdamOptimizer(learning_rate).minimize(loss)

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        print("1111111")
        for step in range(num_steps):
            loss_value, content_loss_value, style_loss_value, _ = sess.run(
                [loss, content_loss, style_loss, train_op],
                feed_dict={
                    content: content_val,
                    style: style_val
                })

            print(
                'step: %d, loss_value: %.4f, content_loss: %.4f, style_loss: %.4f'
                % (step + 1, loss_value[0], content_loss_value[0],
                   style_loss_value[0]))
            if step % 100 == 0:
                result_img_path = os.path.join(output_dir,
                                               'result_%05d.jpg' % (step + 1))
                # 将图像取出,因为之前是4维,所以需要使用一个索引0,将其取出
                result_val = result.eval(sess)[0]
                # np.clip() numpy.clip(a, a_min, a_max, out=None)[source]
                # 其中a是一个数组,后面两个参数分别表示最小和最大值
                result_val = np.clip(result_val, 0, 255)

                img_arr = np.asarray(result_val, np.uint8)
                img = Image.fromarray(img_arr)
                img.save(result_img_path)