def solve(workListFileName, index=None):

        # Get name of worklist from name of file
        workListName = os.path.split(workListFileName)[1]
        workListName = os.path.splitext(workListName)[0]
        scenarios = DOGEController.getScenarios(workListFileName)

        # If just running one, collapse list to one
        isSingleItem = False
        numScenarios = len(scenarios)
        if index != None:
            isSingleItem = True
            numScenarios = 1

        for i in range(numScenarios):

            idx = i
            if isSingleItem:
                idx = index

            print('DOGEController.solve: Solving worklist item %d \n' % idx)

            # Tag this solution to avoid collisions with other model runs
            callerTag = '%s%u' % (workListName, idx)
            taggedDir = ModelSolver.solve(scenarios[idx], callerTag)
Esempio n. 2
0
    def export(self, outputName=None):
        # If no outputName, create one from Scenario
        if outputName == None:
            outputName = self.Description

        if not self.isSolved():
            from modelSolverModule import ModelSolver
            ModelSolver.solve(self)

        from pathFinderModule import PathFinder
        cacheDir = PathFinder.getCacheDir(self)
        outDir = PathFinder(self).getNamedOutputPath(outputName)

        print('Exporting scenario to %s \n' % outDir)
        if os.path.exists(outDir):
            shutil.rmtree(outDir)
        shutil.copyfile(cacheDir, outDir)
    def jenkinsTests():
        
        try:
            isHPCC      = PathFinder.isHPCCRun()

            # Run just the matching cases for now
            testNames   = ['steady', 'open_base', 'open_counter', 'closed_base', 'closed_counter']
            for o in testNames:
                if o == 'steady':
                    scenario = Scenario(ModelTester.test_params).currentPolicy().steady()
                elif o == 'open_base':
                    scenario = Scenario(ModelTester.test_params).currentPolicy().open()
                elif o == 'open_counter':
                    scenario = Scenario(ModelTester.test_params).open()
                elif o == 'closed_base':
                    scenario = Scenario(ModelTester.test_params).currentPolicy().closed()
                elif o == 'closed_counter':
                    scenario = Scenario(ModelTester.test_params).closed()
                else:
                    scenario = []

                typeDeviation = ModelTester.testOutput( scenario, o, 0 )

                if typeDeviation != ModelTester.DEVIATION_NONE:
                    if typeDeviation == ModelTester.DEVIATION_TINY and isHPCC:
                        continue
                    else:
                        exit(1)

            # Test writing the 'series' interface with the last scenario
            # Requires that 'baseline' scenario exists
            PathFinder.setToTestingMode()
            print( 'TESTING OutputWriter.writeScenarios\n' )
            ModelSolver.solve( scenario.baseline() )
            OutputWriter.writeScenarios( [scenario] )
            PathFinder.setToDevelopmentMode()

            print( 'ALL TESTS PASSED.\n' )
            exit(0)
        except:
            exit(1)
    def report_baseline_moments():

        outputfilename = os.path.join(PathFinder.getSourceDir(),
                                      'BaselineMoments.txt')
        f = open(outputfilename, 'w+')

        f.write('-------------BASELINE MOMENTS-------------')
        f.write('%s \r\n' % str(datetime.datetime.now()))

        # load the matrix and get inverter function
        (_, f_invert) = ParamGenerator.invert()

        for labelas in np.arange(0.25, 1.0, 0.25):
            for savelas in np.arange(0.25, 1.0, 0.25):
                target = {'labelas': labelas, 'savelas': savelas}
                f.write(
                    '\r\nBASELINE labor elas = %0.2f  savings elas = %0.2f \r\n'
                    % (labelas, savelas))
                inverse = f_invert(target)

                scenario = Scenario({
                    'economy':
                    'steady',
                    'beta':
                    inverse['beta'],
                    'gamma':
                    inverse['gamma'],
                    'sigma':
                    inverse['sigma'],
                    'modelunit_dollar':
                    inverse['modelunit_dollar'],
                    'bequest_phi_1':
                    0
                })

                save_dir = ModelSolver.solve(scenario)

                targets = ModelCalibrator.moment_targets
                targets = np.vstack(
                    (targets, ['labelas', labelas, 'Labor elasticity']))
                targets = np.vstack(
                    (targets, ['savelas', savelas, 'Savings elasticity']))
                outstr = ModelCalibrator.report_moments(save_dir, targets)
                f.write('%s \r\n' % outstr)
                f.write('-------------------------------------\r\n')

        f.write(' ==== DONE ===== \r\n')
        f.close()
    def calibrate_dollar(gridpoint):

        # Set target = $gdp/adult
        #     from Alex $79.8k for 2016
        #     REM: In moment_targets,
        #        col 1 = varname, col 2 = value, col 3 = description
        target_outperHH_index = np.where(
            ModelCalibrator.moment_targets[:, 0] == 'outperHH')[0]
        target_outperHH = np.array(
            [ModelCalibrator.moment_targets[target_outperHH_index, 1]])

        # Set initial modelunit_dollar.
        # In the future, we could apply a heuristic better initial guess.
        modelunit_dollar = 4.0e-05

        tolerance = 0.01  # as ratio
        err_size = 1
        iter_num = 1
        iter_max = 8  # iterations for modelunit_dollar

        while err_size > tolerance and iter_num <= iter_max:

            # Create Scenario to run
            scenario = Scenario({
                'economy': 'steady',
                'beta': gridpoint.beta,
                'gamma': gridpoint.gamma,
                'sigma': gridpoint.sigma,
                'modelunit_dollar': modelunit_dollar,
                'bequest_phi_1': 0
            })
            save_dir = ModelSolver.solve(scenario)

            # find target -- $gdp/pop
            with open(os.path.join(save_dir, 'paramsTargets.pkl'),
                      'rb') as handle:
                s_paramsTargets = pickle.load(handle)
            run_outperHH = s_paramsTargets['outperHH']

            err_size = abs(run_outperHH / target_outperHH - 1)
            print('...MODELUNIT_DOLLAR iteration %u   error=%f\n ' %
                  (iter_num, err_size))

            # package up answer
            targets = {
                'savelas': s_paramsTargets['savelas'],
                'labelas': s_paramsTargets['labelas'],
                'captoout': s_paramsTargets['captoout'],
                'outperHH': run_outperHH
            }

            # Update by percent shift, reduced a bit as number of
            # iterations increases. This approach slows the update rate
            # in case of slow convergence -- we're usually bouncing around then.
            exp_reduce = max(0.5, 1.0 - iter_num * 0.07)
            modelunit_dollar = modelunit_dollar * (
                (run_outperHH / target_outperHH)**exp_reduce)

            # Find if converged
            #    This only needs to be done after the loop, but
            #    we're about to wipe out the run's files.
            with open(os.path.join(save_dir, 'dynamics.pkl'), 'rb') as handle:
                s_dynamics = pickle.load(handle)
            is_converged = s_dynamics['is_converged']

            # Delete save directory along with parent directories
            shutil.rmtree(os.path.join(save_dir, '..', '..'))

            iter_num = iter_num + 1

        # Keep last successful run with modelunit_dollar
        modelunit_dollar = scenario.modelunit_dollar

        # Check solution condition.
        # Stable solution identified as:
        #  1. Robust solver convergence rate
        #  2. modelunit_dollar convergence
        is_solved = is_converged and (err_size <= tolerance)
        if iter_num > iter_max:
            print('...MODELUNIT_DOLLAR -- max iterations (%u) reached.\n' %
                  iter_max)

        return (targets, modelunit_dollar, is_solved)
Esempio n. 6
0
# -*- coding: utf-8 -*-
"""
Created on Mon Jul 15 09:58:42 2019

@author: Azanca
"""

#Run Solver with test parameters

from scenarioModule import Scenario
from modelTesterModule import ModelTester
from modelSolverModule import ModelSolver

t = ModelTester.test_params
s = Scenario(t)

ModelSolver.solve(s)
    def testOutput(scenario, testName, isInteractive):

        # Set to testing environment
        PathFinder.setToTestingMode()
        
        # Clear the old results and solve
        ModelSolver.removeCached(scenario)
        taggedDir = ModelSolver.solve(scenario)
        cacheDir  = PathFinder.getCacheDir(scenario)
        
        # Set to development environment 
        #   TBD: Set back to original environment?
        PathFinder.setToDevelopmentMode()

        # testSet depends on type of scenario
        if( scenario.isSteady() ):
            setNames = ['market', 'dynamics']
        elif( scenario.isCurrentPolicy() ):
            setNames = ['market', 'dynamics' ]
        else:
            setNames = ['market', 'dynamics', 'statics']
        
        # Load target values
        targetfile = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'ModelTester.pkl')
        with open(targetfile, 'rb') as handle:
            s = pickle.load(handle)
        target = s.target

        # Initialize match flag
        typeDeviation = ModelTester.DEVIATION_NONE

        # Define function to flag issues
        # NOTE: Relies on severity of deviation to be increasing
        def flag(str, deviation):
            print('\t%-15s%-20s%s\n' % (setname, valuename, str))
            global typeDeviation
            if deviation > typeDeviation:
                typeDeviation = deviation        

        print('\n[Test results]\n')
        for i in range(len(setNames)):

            # Extract output and target values by set
            setname = setNames[i]
            output = {}
            with open(os.path.join(cacheDir, ('%s.pkl' % setname)), 'rb') as handle:
                output[testName][setname] = pickle.load(handle)
            outputset = output[testName][setname]
            targetset = target[testName][setname]

            # Iterate over target values
            targetvaluenames = targetset.keys()

            for j in range(len(targetvaluenames)):

                valuename = targetvaluenames[j]

                if not valuename in outputset.keys():

                    # Flag missing value
                    flag('Not found', ModelTester.DEVIATION_FATAL)
                    continue

                if isinstance(outputset[valuename], dict):

                    # Skip checking of structs -- it is currently just
                    # priceindex which does not need to be checked
                    print('\tSkipping %s because it is a struct.\n' % valuename)
                    continue

                if np.any(np.isnan(outputset[valuename][:])):

                    # Flag NaN value
                    flag('NaN value', ModelTester.DEVIATION_FATAL)
                    continue

                if np.any(outputset[valuename].shape != targetset[valuename].shape):

                    # Flag for size mismatch
                    flag('Size mismatch', ModelTester.DEVIATION_FATAL)
                    continue

                # Classify deviation
                deviation = ModelTester.calculateDeviation(outputset[valuename][:], targetset[valuename][:])
                if deviation > 0:
                    if (deviation < 1e-6): 
                        msg = 'TINY : %06.16f%% deviation' % deviation*100
                        flag(msg, ModelTester.DEVIATION_TINY)
                    elif deviation < 1e-4:
                        msg = 'SMALL: %06.16f%% deviation' % deviation*100
                        flag( msg, ModelTester.DEVIATION_SMALL )
                    else:
                        msg = 'LARGE: %06.4f%% deviation' % deviation*100
                        flag( msg, ModelTester.DEVIATION_FATAL )

            # Identify new values, if any
            outputvaluenames = outputset.keys()

            for j in range(len(outputvaluenames)):

                valuename = outputvaluenames[j]

                if not valuename in targetset.keys():
                    flag('New', ModelTester.DEVIATION_FATAL)

        # Check for match
        if typeDeviation == ModelTester.DEVIATION_NONE:
            print('\tTarget matched.\n\n')
        else:

            if not isInteractive: 
                print( '\tTarget not matched.\n\n' )
                return
            
            # Query user for target update
            ans = input('\n\tUpdate test target with new values? Y/[N]: ')
            if ans == 'Y':
                target[testName] = output[testName]
                with open(targetfile) as f:
                    pickle.dump(target, f)
                print('\tTarget updated.\n\n')
            else:
                print('\tTarget retained.\n\n')

        return typeDeviation
    def unanticipated_shock():
        
        # Make the baseline scenario and "non-shock" version
        t                   = ModelTester.test_params
        
        # baseline scenario is not shocked
        s_baseline          = Scenario(t).currentPolicy().baseline()
        
        # Make "non-shock" shock baseline
        t                   = s_baseline.getParams()
        t.PolicyShockYear   = t.TransitionFirstYear + ModelTester.policyShockShift
        s_next              = Scenario(t)

        # Get baseline Market, Dynamic
        ModelSolver.removeCached(s_baseline)                 # Clear cached Scenario
        
        tagged_dir      = ModelSolver.solve(s_baseline)
        baseline_dir    = PathFinder.getCacheDir(s_baseline)
        with open(os.path.join(baseline_dir, 'market.pkl'), 'rb') as handle:
            baseMarket      = pickle.load(handle)
        with open(os.path.join(baseline_dir, 'dynamics.pkl'), 'rb') as handle:
            baseDynamic     = pickle.load(handle)   
        
        # Get shocked Market, Dynamic
        ModelSolver.removeCached(s_next)                     # Clear cached scenario
        
        tagged_dir      = ModelSolver.solve(s_next)
        x_dir           = PathFinder.getCacheDir(s_next)
        with open(os.path.join(x_dir, 'market.pkl'), 'rb') as handle:
            xMarket         = pickle.load(handle)
        with open(os.path.join(x_dir, 'dynamics.pkl'), 'rb') as handle:
            xDynamic        = pickle.load(handle)
        
        # Compare baseline and shocked path
        print( '\n' )
        
        def do_check (baseD, xD, dName):
            passed = 1
            for p in baseD.keys():
                valuename = p
                if (not isinstance(baseD[valuename], numbers.Number) or ('_next' in valuename)):
                    continue

                # Check for within percent tolerance, also check 
                #    within numerical deviation (this is in case div by
                #    zero or close to zero)
                # TBD: Standardize deviations and tolerances
                percentDeviation    = abs((xD[valuename] - baseD[valuename]) / baseD[valuename])
                absoluteDeviation   = abs(baseD[valuename] - xD[valuename])
                if not np.all(np.array(percentDeviation) < 1e-4):
                    if not np.all(np.array(absoluteDeviation) < 1e-13):
                        m1 = print( 'Max percentdev = %f' % max(percentDeviation) )
                        m2 = print( 'Max abs dev = %0.14f' % max(absoluteDeviation) )
                        print( '%s.%s outside tolerance;\t\t %s; %s \n' % (dName, valuename, m1, m2))
                        passed = 0
                
            return passed
        
        passed = do_check( baseMarket , xMarket , 'Market'  )
        passed = do_check( baseDynamic, xDynamic, 'Dynamic' )
        if passed:
            print( 'All values within convergence tolerances.\n' )
        
        return passed