Esempio n. 1
0
    def __init__(self, logf0s_normalization, mcep_normalization,
                 model_checkpoint, validation_A_dir, output_A_dir):

        logf0s_normalization = np.load(logf0s_normalization)
        self.log_f0s_mean_A = logf0s_normalization['mean_A']
        self.log_f0s_std_A = logf0s_normalization['std_A']
        self.log_f0s_mean_B = logf0s_normalization['mean_B']
        self.log_f0s_std_B = logf0s_normalization['std_B']

        mcep_normalization = np.load(mcep_normalization)
        self.coded_sps_A_mean = mcep_normalization['mean_A']
        self.coded_sps_A_std = mcep_normalization['std_A']
        self.coded_sps_B_mean = mcep_normalization['mean_B']
        self.coded_sps_B_std = mcep_normalization['std_B']

        self.validation_A_dir = validation_A_dir
        self.output_A_dir = output_A_dir

        self.device = torch.device(
            'cuda' if torch.cuda.is_available() else 'cpu')
        self.generator_A2B = Generator().to(self.device)
        self.generator_A2B.eval()

        checkPoint = torch.load(model_checkpoint)
        self.generator_A2B.load_state_dict(
            state_dict=checkPoint['model_genA2B_state_dict'])
        print("load model checkpoint finish!")
Esempio n. 2
0
    def __init__(self,
                 logf0s_normalization,
                 mcep_normalization,
                 coded_sps_A_norm,
                 coded_sps_B_norm,
                 model_checkpoint,
                 validation_A_dir,
                 output_A_dir,
                 validation_B_dir,
                 output_B_dir,
                 restart_training_at):#=None):
        self.start_epoch = 0
        self.num_epochs = 2000
        self.mini_batch_size = 16
        self.dataset_A = self.loadPickleFile(coded_sps_A_norm)
        self.dataset_B = self.loadPickleFile(coded_sps_B_norm)
        self.device = torch.device(
            'cuda' if torch.cuda.is_available() else 'cpu')

        # Speech Parameters
        logf0s_normalization = np.load(logf0s_normalization)
        self.log_f0s_mean_A = logf0s_normalization['mean_A']
        self.log_f0s_std_A = logf0s_normalization['std_A']
        self.log_f0s_mean_B = logf0s_normalization['mean_B']
        self.log_f0s_std_B = logf0s_normalization['std_B']

        mcep_normalization = np.load(mcep_normalization)
        self.coded_sps_A_mean = mcep_normalization['mean_A']
        self.coded_sps_A_std = mcep_normalization['std_A']
        self.coded_sps_B_mean = mcep_normalization['mean_B']
        self.coded_sps_B_std = mcep_normalization['std_B']

        # Generator and Discriminator
        self.generator_A2B = Generator().to(self.device)
        self.generator_B2A = Generator().to(self.device)
        self.discriminator_A = Discriminator().to(self.device)
        self.discriminator_B = Discriminator().to(self.device)

        # Loss Functions
        criterion_mse = torch.nn.MSELoss()

        # Optimizer
        g_params = list(self.generator_A2B.parameters()) + \
            list(self.generator_B2A.parameters())
        d_params = list(self.discriminator_A.parameters()) + \
            list(self.discriminator_B.parameters())

        # Initial learning rates
        self.generator_lr = 0.0002
        self.discriminator_lr = 0.0001

        # Learning rate decay
        self.generator_lr_decay = self.generator_lr / 200000
        self.discriminator_lr_decay = self.discriminator_lr / 200000

        # Starts learning rate decay from after this many iterations have passed
        self.start_decay = 12500

        self.generator_optimizer = torch.optim.Adam(
            g_params, lr=self.generator_lr, betas=(0.5, 0.999))
        self.discriminator_optimizer = torch.optim.Adam(
            d_params, lr=self.discriminator_lr, betas=(0.5, 0.999))

        # To Load save previously saved models
        self.modelCheckpoint = model_checkpoint

        # Validation set Parameters
        self.validation_A_dir = validation_A_dir
        self.output_A_dir = output_A_dir
        self.validation_B_dir = validation_B_dir
        self.output_B_dir = output_B_dir

        # Storing Discriminatior and Generator Loss
        self.generator_loss_store = []
        self.discriminator_loss_store = []

        self.file_name = 'log_store_non_sigmoid.txt'

        if restart_training_at is not None:
            # Training will resume from previous checkpoint
            self.start_epoch = self.loadModel(restart_training_at)
            print("Training resumed")