def _generate_run_configs(self):
        analyzer_config = self._analyzer_config
        model_repository = analyzer_config['model_repository']
        model = self._model

        model_name_index = 0
        model_config_parameters = model.model_config_parameters()

        # Generate all the sweeps for a given parameter
        models_sweeps = \
            self._generate_model_config_combinations(
                model_config_parameters)
        for model_sweep in models_sweeps:
            model_config = ModelConfig.create_from_file(
                f'{model_repository}/{model.model_name()}')
            model_config_dict = model_config.get_config()
            for key, value in model_sweep.items():
                model_config_dict[key] = value
            model_config = ModelConfig.create_from_dictionary(
                model_config_dict)

            # Temporary model name to be used for profiling. We
            # can't use the same name for different configurations.
            # The new model name is the original model suffixed with
            # _i<config_index>. Where the config index is the index
            # of the model config alternative.
            model_tmp_name = f'{model.model_name()}_i{model_name_index}'
            model_config.set_field('name', model_tmp_name)
            perf_configs = self._generate_perf_config_for_model(
                model_tmp_name, model)

            # Add the new run config.
            self._run_configs.append(
                RunConfig(model.model_name(), model_config, perf_configs))
            model_name_index += 1
Esempio n. 2
0
    def generate_run_config_for_model_sweep(self, model, model_sweep):
        """
        Parameters
        ----------
        model : ConfigModel
            The model for which a run config is being generated
        model_sweep: dict
            Model config parameters
        """

        analyzer_config = self._analyzer_config
        model_repository = analyzer_config['model_repository']
        num_retries = analyzer_config['max_retries']

        if analyzer_config['triton_launch_mode'] != 'remote':
            model_config = ModelConfig.create_from_file(
                f'{model_repository}/{model.model_name()}')

            if model_sweep is not None:
                model_config_dict = model_config.get_config()
                for key, value in model_sweep.items():
                    if value is not None:
                        model_config_dict[key] = value
                model_config = ModelConfig.create_from_dictionary(
                    model_config_dict)

            model_name_index = self._model_name_index
            model_config_dict = model_config.get_config()

            try:
                model_name_index = self._model_configs.index(model_config_dict)
            except ValueError:
                self._model_configs.append(model_config_dict)
                self._model_name_index += 1

            # Temporary model name to be used for profiling. We
            # can't use the same name for different configurations.
            # The new model name is the original model suffixed with
            # _i<config_index>. Where the config index is the index
            # of the model config alternative.
            model_tmp_name = f'{model.model_name()}_i{model_name_index}'
            model_config.set_field('name', model_tmp_name)
            perf_configs = self._generate_perf_config_for_model(
                model_tmp_name, model)
            for perf_config in perf_configs:
                self._run_configs.append(
                    RunConfig(model.model_name(), model_config, perf_config))
        else:
            model_config = ModelConfig.create_from_triton_api(
                self._client, model.model_name(), num_retries)
            perf_configs = self._generate_perf_config_for_model(
                model.model_name(), model)

            for perf_config in perf_configs:
                # Add the new run config.
                self._run_configs.append(
                    RunConfig(model.model_name(), model_config, perf_config))
Esempio n. 3
0
    def test_create_from_dict(self):
        model_config = ModelConfig.create_from_dictionary(self._model_config)
        self.assertTrue(model_config.get_config() == self._model_config)

        new_config = {'instance_group': [{'count': 2, 'kind': 'KIND_CPU'}]}
        model_config.set_config(new_config)
        self.assertTrue(model_config.get_config() == new_config)
Esempio n. 4
0
 def test_create_from_file(self):
     test_protobuf = self._model_config_protobuf
     mock_model_config = MockModelConfig(test_protobuf)
     mock_model_config.start()
     model_config = ModelConfig.create_from_file('/path/to/model_config')
     self.assertTrue(model_config.get_config() == self._model_config)
     mock_model_config.stop()
Esempio n. 5
0
    def test_write_config_to_file_with_relative_path(self, mock_os_symlink,
                                                     *args):
        """
        Tests that the call to os.symlink() within write_config_to_file() uses
        a valid relative path when user uses a relative path with the
        `--output-model-repository-path` option
        """

        model_config = ModelConfig.create_from_dictionary(self._model_config)

        model_path = './output_model_repository/model_config_1'
        src_model_path = '/tmp/src_model_repository/model'
        last_model_path = './output_model_repository/model_config_0'

        mock_model_config = MockModelConfig()
        mock_model_config.start()
        model_config.write_config_to_file(model_path, src_model_path,
                                          last_model_path)
        mock_model_config.stop()

        mock_os_symlink.assert_any_call(
            '../model_config_0/1',
            './output_model_repository/model_config_1/1')
        mock_os_symlink.assert_any_call(
            '../model_config_0/output0_labels.txt',
            './output_model_repository/model_config_1/output0_labels.txt')
    def from_dict(cls, results_dict):
        """
        Populate the Results class based on the dictionary value
        (stored in the checkpoint)
        
        The checkpoint format is:
        {model_name: { [model_config: (key, {measurements} ) ] } }
        ---results_dict-------------------------------------------
                     ---model_dict------------------------------
                       ---model_config_tuple_list-------------
                                      -key, measurement_dict-
        """
        results = Results()

        for model_name, model_dict in results_dict['_results'].items():
            for model_config_name, model_config_tuple_list in model_dict.items(
            ):
                model_config = ModelConfig.from_dict(
                    model_config_tuple_list[Results.MODEL_CONFIG_INDEX])

                for key, measurement_dict in model_config_tuple_list[
                        Results.MEASUREMENTS_INDEX].items():
                    measurement = Measurement.from_dict(measurement_dict)

                    results._add_measurement(model_name, model_config,
                                             model_config_name, key,
                                             measurement)

        return results
Esempio n. 7
0
    def _create_model_run_config(self, model_name, model_config_name,
                                 pa_config_name):
        model_config_dict = {'name': model_config_name}
        self._model_config = ModelConfig.create_from_dictionary(
            model_config_dict)

        perf_config = PerfAnalyzerConfig()
        perf_config.update_config({'model-name': pa_config_name})
        return ModelRunConfig(model_name, self._model_config, perf_config)
    def _make_remote_model_config(self):
        if not self._reload_model_disable:
            self._client.load_model(self._base_model_name)
        model_config = ModelConfig.create_from_triton_api(
            self._client, self._base_model_name, self._num_retries)
        model_config.set_cpu_only(self._cpu_only)
        if not self._reload_model_disable:
            self._client.unload_model(self._base_model_name)

        return model_config
 def mock_top_n_results(self, model_name=None, n=-1):
     return [
         ModelResult(
             None,
             ModelConfig(
                 json_format.ParseDict({'name': 'config1'},
                                       model_config_pb2.ModelConfig())),
             None),
         ModelResult(
             None,
             ModelConfig(
                 json_format.ParseDict({'name': 'config3'},
                                       model_config_pb2.ModelConfig())),
             None),
         ModelResult(
             None,
             ModelConfig(
                 json_format.ParseDict({'name': 'config4'},
                                       model_config_pb2.ModelConfig())),
             None)
     ]
Esempio n. 10
0
    def test_write_config_file(self):
        model_config = ModelConfig.create_from_dictionary(self._model_config)
        model_output_path = os.path.abspath('./model_config')

        mock_model_config = MockModelConfig()
        mock_model_config.start()
        # Write the model config to output
        with patch('model_analyzer.triton.model.model_config.open',
                   mock_open()) as mocked_file:
            with patch('model_analyzer.triton.model.model_config.copy_tree',
                       MagicMock()):
                model_config.write_config_to_file(model_output_path,
                                                  '/mock/path', None)
            content = mocked_file().write.call_args.args[0]
        mock_model_config.stop()

        mock_model_config = MockModelConfig(content)
        mock_model_config.start()
        model_config_from_file = \
            ModelConfig.create_from_file(model_output_path)
        self.assertTrue(
            model_config_from_file.get_config() == self._model_config)
        mock_model_config.stop()

        # output path doesn't exist
        with patch('model_analyzer.triton.model.model_config.os.path.exists',
                   MagicMock(return_value=False)):
            with self.assertRaises(TritonModelAnalyzerException):
                ModelConfig.create_from_file(model_output_path)

        # output path is a file
        with patch('model_analyzer.triton.model.model_config.os.path.isfile',
                   MagicMock(return_value=True)):
            with self.assertRaises(TritonModelAnalyzerException):
                ModelConfig.create_from_file(model_output_path)
    def _make_direct_mode_model_config(self, param_combo):
        """ 
        Given a base model config and a combination of parameters to change,
        apply the changes on top of the base and return the new model config
        """
        model_config_dict = self._get_base_model_config_dict()
        if param_combo is not None:
            for key, value in param_combo.items():
                if value is not None:
                    model_config_dict[key] = value

        model_config_dict['name'] = self._get_model_variant_name(param_combo)

        model_config = ModelConfig.create_from_dictionary(model_config_dict)
        return model_config
    def test_build_summary_table(self):
        mock_model_config = MockModelConfig()
        mock_model_config.start()
        objective_spec = {'perf_throughput': 10}
        self.result_comparator = ResultComparator(
            metric_objectives=objective_spec)

        avg_gpu_metrics = {0: {'gpu_used_memory': 6000, 'gpu_utilization': 60}}

        for i in range(10, 0, -1):
            avg_non_gpu_metrics = {
                'perf_throughput': 100 + 10 * i,
                'perf_latency': 4000
            }
            self.model_config['name'] = f'model_{i}'
            model_config = ModelConfig.create_from_dictionary(
                self.model_config)
            self.report_manager.add_result(
                report_key='test_report',
                result=construct_result(
                    avg_gpu_metric_values=avg_gpu_metrics,
                    avg_non_gpu_metric_values=avg_non_gpu_metrics,
                    comparator=self.result_comparator,
                    model_config=model_config))

        summary_table, summary_sentence = \
            self.report_manager._build_summary_table(
                report_key='test_report',
                num_measurements=10,
                gpu_name='TITAN RTX')

        expected_summary_sentence = (
            "In 10 measurement(s), 1/GPU model instance(s)"
            " with max dynamic batch size of [4 8] on"
            " platform tensorflow_graphdef delivers maximum"
            " throughput under the given constraints on GPU(s) TITAN RTX.")
        self.assertEqual(expected_summary_sentence, summary_sentence)

        # Get throughput index and make sure results are sorted
        throughput_index = summary_table.headers().index(
            'Throughput (infer/sec)')
        model_name_index = summary_table.headers().index('Model Config Name')
        for i in range(9):
            current_row = summary_table.get_row_by_index(i)
            next_row = summary_table.get_row_by_index(i + 1)
            self.assertEqual(current_row[model_name_index], f'model_{10-i}')
            self.assertGreaterEqual(current_row[throughput_index],
                                    next_row[throughput_index])
    def _add_result_measurement(self,
                                model_config_name,
                                model_name,
                                avg_gpu_metrics,
                                avg_non_gpu_metrics,
                                result_comparator,
                                cpu_only=False):

        config_pb = self.model_config.copy()
        config_pb["name"] = model_config_name
        model_config = ModelConfig.create_from_dictionary(config_pb)
        model_config._cpu_only = cpu_only

        measurement = construct_measurement(model_name, avg_gpu_metrics,
                                            avg_non_gpu_metrics,
                                            result_comparator)
        run_config = ModelRunConfig(model_name, model_config,
                                    measurement.perf_config())
        self.result_manager.add_measurement(run_config, measurement)
 def _get_base_model_config_dict(self):
     config = ModelConfig.create_from_file(
         f'{self._model_repository}/{self._base_model_name}')
     return config.get_config()