Esempio n. 1
0
def main(_):
    dataset = cfg.dataset
    input_shape, num_classes, use_test_queue = get_dataset_values(
        dataset, cfg.test_batch_size, is_training=False)

    tf.logging.info("Initializing CNN for {}...".format(dataset))
    model = CNN(input_shape,
                num_classes,
                is_training=False,
                use_test_queue=use_test_queue)
    tf.logging.info("Finished initialization.")

    if not os.path.exists(cfg.logdir):
        os.mkdir(cfg.logdir)
    logdir = os.path.join(cfg.logdir, model.name)
    if not os.path.exists(logdir):
        os.mkdir(logdir)
    logdir = os.path.join(logdir, dataset)
    if not os.path.exists(logdir):
        os.mkdir(logdir)

    sv = tf.train.Supervisor(graph=model.graph,
                             logdir=logdir,
                             save_model_secs=0)

    tf.logging.info("Initialize evaluation...")
    evaluate(model, sv, dataset)
    tf.logging.info("Finished evaluation.")
Esempio n. 2
0
def run():
    args = get_args()

    train_set = read_data(data_folder / args.train)
    test_set = read_data(data_folder / args.test,
                         col_names=("tweet_id", "text", "q1_label"))

    regular_solution = Naive_Bayes(train_set, test_set, ['yes', 'no'], False)
    filtered_solution = Naive_Bayes(train_set, test_set, ['yes', 'no'], True)

    output_trace(output_folder / "trace_NB-BOW-OV.txt", regular_solution)
    output_trace(output_folder / "trace_NB-BOW-FV.txt", filtered_solution)

    evaluate(output_folder / "eval_NB-BOW-OV.txt", regular_solution, "yes",
             "no")
    evaluate(output_folder / "eval_NB-BOW-FV.txt", filtered_solution, "yes",
             "no")

    #using sanitized input
    train_set_sanitized = sanitize(train_set)
    test_set_sanitized = sanitize(test_set)

    sanitized_solution = Naive_Bayes(train_set_sanitized, test_set_sanitized,
                                     ['yes', 'no'], False)
    output_trace(output_folder / "trace_NB-BOW-OV_sanitized.txt",
                 sanitized_solution)
    evaluate(output_folder / "eval_NB-BOW-OV_sanitized.txt",
             sanitized_solution, "yes", "no")
Esempio n. 3
0
def train():
    with tf.Graph().as_default():
        global_step = tf.Variable(0, trainable=False)

        # Get images and labels.
        images, labels = convnet.inputs(eval_data=False)

        # Build a Graph that computes the logits predictions from the
        # inference model.
        logits = convnet.inference(images)

        # Calculate loss.
        loss = convnet.loss(logits, labels)

        # Calculate accuracy
        top_k_op = tf.nn.in_top_k(logits, labels, 1)

        # Build a Graph that trains the model with one batch of examples and
        # updates the model parameters.
        train_op = convnet.train(loss, global_step)

        # Create a saver.
        saver = tf.train.Saver(tf.all_variables())

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.merge_all_summaries()

        # Build an initialization operation to run below.
        init = tf.initialize_all_variables()

        # Start running operations on the Graph.
        sess = tf.Session(config=tf.ConfigProto(
            log_device_placement=FLAGS.log_device_placement))
        sess.run(init)

        # Load previously stored model from checkpoint
        ckpt = tf.train.get_checkpoint_state(FLAGS.train_dir)
        if ckpt and ckpt.model_checkpoint_path:
            # Restores from checkpoint
            saver.restore(sess, ckpt.model_checkpoint_path)
            # Assuming model_checkpoint_path looks something like:
            #   /my-favorite-path/cifar10_train/model.ckpt-0,
            # extract global_step from it.
            global_step = ckpt.model_checkpoint_path.split('/')[-1].split(
                '-')[-1]
            print("Loading from checkpoint.Global step %s" % global_step)
        else:
            print("No checkpoint file found...Creating a new model...")

        stepfile = "/home/soms/EmotionMusic/MediaEval_Classification/stepfile.txt"
        if not os.path.exists(stepfile):
            print("No step file found.")
            step = 0
        else:
            f = open(stepfile, "r")
            step = int(f.readlines()[0])
            print("Step file step %d" % step)

        # Start the queue runners.
        tf.train.start_queue_runners(sess=sess)

        summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, sess.graph)

        while step < FLAGS.max_steps:
            #print(images.eval(session = sess).shape)
            start_time = time.time()
            _, loss_value, predictions = sess.run([train_op, loss, top_k_op])
            duration = time.time() - start_time

            def signal_handler(signal, frame):
                f = open(stepfile, 'w')
                f.write(str(step))
                print("Step file written to.")
                sys.exit(0)

            signal.signal(signal.SIGINT, signal_handler)

            assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
            if step % 10 == 0:
                num_examples_per_step = 25
                examples_per_sec = num_examples_per_step / duration
                sec_per_batch = float(duration)
                accuracy = float(np.sum(predictions)) / num_examples_per_step
                format_str = (
                    '%s: step %d, loss = %.2f accuracy@1 = %.2f (%.1f examples/sec; %.3f '
                    'sec/batch)')
                print(format_str % (datetime.now(), step, loss_value, accuracy,
                                    examples_per_sec, sec_per_batch))

            if step % 100 == 0:
                summary_str = sess.run(summary_op)
                summary_writer.add_summary(summary_str, step)

            # Save the model checkpoint periodically.
            if step % 500 == 0 or (step + 1) == FLAGS.max_steps:
                checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)
                model_eval.evaluate(mode=1)
            step += 1