Esempio n. 1
0
        else:
            # get dates for previous days predictions/forecast
            DATES = DATES_O[0:j]
            obs_y_trunc = obs_y[0:j]
            #if len(obs_y_trunc) == 0 or max(obs_y_trunc) == 1:
            #    continue
            
        
            
        # declare x as a list of integers from 0 to len(y)
        x = list(range(len(obs_y_trunc)))
         
        iterations = 50000
        SEIR_fit = 0
        
        obs_pred_r2, obs_x, pred_y, forecasted_x, forecasted_y, params = fxns.fit_curve(x, obs_y_trunc, 
                                model, ForecastDays, PopSize, ArrivalDate, j, iterations, SEIR_fit)
        
            
        print(obs_pred_r2)
        
        if obs_pred_r2 < 0:
            obs_pred_r2 = 0.0

        # convert any y-values (observed, predicted, or forecasted)
        # that are less than 0 (nonsensical values) to 0.
        obs_y_trunc[obs_y_trunc < 0] = 0
        pred_y = np.array(pred_y)
        pred_y[pred_y < 0] = 0

        forecasted_y = np.array(forecasted_y)
        forecasted_y[forecasted_y < 0] = 0
Esempio n. 2
0
    def _get_fit(self, focal_loc, ForecastDays, StatePops, model,
                 seir_fits_df):

        PopSize = StatePops[StatePops['Province/State'] ==
                            focal_loc]['PopSize'].tolist()
        PopSize = PopSize[0]

        ArrivalDate = StatePops[StatePops['Province/State'] == focal_loc][
            'Date_of_first_reported_infection'].tolist()
        ArrivalDate = ArrivalDate[0]

        SEIR_Fit = seir_fits_df[seir_fits_df['focal_loc'] == focal_loc]

        # A function to generate all figures and tables

        # variables:
        # obs_x: observed x values
        # obs_y: observed y values
        # model: the model to fit
        # T0: likely date of first infection
        # ForecastDays: number of days ahead to extend predictions
        # N: population size of interest
        # ArrivalDate: likely data of first infection (used by SEIR-SD model)
        # incubation_period: disease-specific epidemilogical parameter
        # average number of days until an exposed person becomes
        # begins to exhibit symptoms of infection
        # infectious_period: disease-specific epidemilogical parameter
        # average number of days an infected person is infected
        # rho: disease-specific epidemilogical parameter
        # aka basic reproductive number
        # average number of secondary infections produced by a typical case
        # of an infection in a population where everyone is susceptible
        # socdist: population-specific social-distancing parameter

        # declare the following as global variables so their changes can be
        # seen/used by outside functions

        # add 1 to number of forecast days for indexing purposes
        ForecastDays = int(ForecastDays + 1)

        # filter main dataframe to include only the chosen location
        df_sub = self._df[self._df['Province/State'] == focal_loc]

        # get column labels, will filter below to extract dates
        yi = list(df_sub)

        obs_y_trunc = []
        fore_clrs = [
            'purple', 'mediumorchid', 'plum', 'blue', 'deepskyblue',
            'darkturquoise', 'green', 'limegreen', 'gold', 'orange', 'red'
        ]
        pred_clrs = [
            '0.0', '0.1', '0.2', '0.25', '0.3', '0.35', '0.4', '0.5', '0.6',
            '0.7', '0.8'
        ]

        for i, j in enumerate(list(range(-10, 1))):
            pred_clr = pred_clrs[i]
            fore_clr = fore_clrs[i]

            if j == 0:
                # get dates for today's predictions/forecast
                DATES = yi[4:]
                obs_y_trunc = df_sub.iloc[0, 4:].values
            else:
                # get dates for previous days predictions/forecast
                DATES = yi[4:j]
                obs_y_trunc = df_sub.iloc[0, 4:j].values

            ii = 0
            while obs_y_trunc[ii] == 0:
                ii += 1
            y = obs_y_trunc[ii:]
            dates = DATES[ii:]

            # declare x as a list of integers from 0 to len(y)
            x = list(range(len(y)))

            # Call function to use chosen model to obtain:
            #    r-square for observed vs. predicted
            #    predicted y-values
            #    forecasted x and y values
            iterations = 2
            obs_pred_r2, obs_x, pred_y, forecasted_x, forecasted_y, params = fxns.fit_curve(
                x, y, model, ForecastDays, PopSize, ArrivalDate, j, iterations,
                SEIR_Fit)

            # convert y values to numpy array
            y = np.array(y)

            # because it isn't based on a best fit line,
            # and the y-intercept is forced through [0,0]
            # a model can perform so poorly that the
            # observed vs predicted r-square is negative (a nonsensical value)
            # if this happens, report the r-square as 0.0
            if obs_pred_r2 < 0:
                obs_pred_r2 = 0.0

            # convert any y-values (observed, predicted, or forecasted)
            # that are less than 0 (nonsensical values) to 0.
            y[y < 0] = 0
            pred_y = np.array(pred_y)
            pred_y[pred_y < 0] = 0

            forecasted_y = np.array(forecasted_y)
            forecasted_y[forecasted_y < 0] = 0

            # number of from ArrivalDate to end of forecast window
            #numdays = len(forecasted_x)
            latest_date = pd.to_datetime(dates[-1])
            first_date = pd.to_datetime(dates[0])

            # get the date of the last day in the forecast window
            future_date = latest_date + datetime.timedelta(days=ForecastDays -
                                                           1)

            # get all dates from ArrivalDate to the last day in the forecast window
            fdates = pd.date_range(start=first_date, end=future_date)
            fdates = fdates.strftime('%m/%d')

            # designature plot label for legend
            if j == 0:
                label = 'Current forecast'

            else:
                label = str(-j) + ' day old forecast'

            if label == 'Current forecast':
                for i, val in enumerate(forecasted_y):
                    if i > 0:
                        if forecasted_y[i] - forecasted_y[i - 1] > 0:
                            self.new_cases.append(forecasted_y[i] -
                                                  forecasted_y[i - 1])
                        else:
                            self.new_cases.append(0)
                    if i == 0:
                        self.new_cases.append(forecasted_y[i])

            # get dates from ArrivalDate to the current day
            dates = pd.date_range(start=first_date, end=latest_date)
            dates = dates.strftime('%m/%d')

            output_list = [
                y, pred_y, forecasted_y, dates, fdates, label, obs_pred_r2,
                model, focal_loc, PopSize, ArrivalDate, pred_clr, fore_clr
            ]

            self._model_fits_df.loc[len(self._model_fits_df)] = output_list