Esempio n. 1
0
 def build_model(self):
     am_args = am_hparams()
     am_args.vocab_size = 230  #len(train_data.am_vocab)
     am = Am(am_args)
     return am.ctc_model
Esempio n. 2
0
import difflib
import tensorflow as tf
import numpy as np
from utils import decode_ctc, GetEditDistance

# 0.准备解码所需字典,参数需和训练一致,也可以将字典保存到本地,直接进行读取
from utils import get_data, data_hparams
data_args = data_hparams()
train_data = get_data(data_args)

# 1.声学模型-----------------------------------
from model_speech.cnn_ctc import Am, am_hparams

am_args = am_hparams()
am_args.vocab_size = len(train_data.am_vocab)
am = Am(am_args)
print('loading acoustic model...')
am.ctc_model.load_weights('logs_am/model.h5')

# 2.语言模型-------------------------------------------
from model_language.transformer import Lm, lm_hparams

lm_args = lm_hparams()
lm_args.input_vocab_size = len(train_data.pny_vocab)
lm_args.label_vocab_size = len(train_data.han_vocab)
lm_args.dropout_rate = 0.
print('loading language model...')
lm = Lm(lm_args)
sess = tf.Session(graph=lm.graph)
with lm.graph.as_default():
    saver = tf.train.Saver()
Esempio n. 3
0
def train_am(x=None, y=None, fit_epoch=10):
    from model_speech.cnn_ctc import Am, am_hparams
    am_args = am_hparams()
    am_args.vocab_size = len(utils.pny_vocab)
    am_args.gpu_nums = 1
    am_args.lr = 0.0008
    am_args.is_training = True
    am = Am(am_args)

    if os.path.exists(os.path.join(utils.cur_path, 'logs_am', 'model.h5')):
        print('加载声学模型...')
        am.ctc_model.load_weights(
            os.path.join(utils.cur_path, 'logs_am', 'model.h5'))

    checkpoint = ModelCheckpoint(os.path.join(
        utils.cur_path, 'checkpoint', "model_{epoch:02d}-{val_loss:.2f}.h5"),
                                 monitor='val_loss',
                                 save_best_only=True)
    eStop = EarlyStopping()  #损失函数不再减小后patience轮停止训练
    #tensorboard --logdir=/media/yangjinming/DATA/GitHub/AboutPython/AboutDL/语音识别/logs_am/tbLog/ --host=127.0.0.1
    #tensbrd = TensorBoard(log_dir=os.path.join(utils.cur_path,'logs_am','tbLog'))

    if x is not None:  #利用实时声音训练调整模型,使定制化
        size = 1
        if type(x) == np.ndarray:
            x, y = utils.real_time2data([x], [y])
        else:
            size = len(x)
            x, y = utils.real_time2data(x, y)
        am.ctc_model.fit(x=x, y=y, batch_size=size, epochs=fit_epoch)
    else:  #利用训练数据
        batch = train_data.get_am_batch()  #获取的是生成器
        dev_batch = dev_data.get_am_batch()
        validate_step = 200  #取N个验证的平均结果
        history = am.ctc_model.fit_generator(batch,
                                             steps_per_epoch=batch_num,
                                             epochs=epochs,
                                             callbacks=[eStop, checkpoint],
                                             workers=1,
                                             use_multiprocessing=False,
                                             verbose=1,
                                             validation_data=dev_batch,
                                             validation_steps=validate_step)

    am.ctc_model.save_weights(
        os.path.join(utils.cur_path, 'logs_am', 'model.h5'))
    #写入序列化的 PB 文件
    #with keras.backend.get_session() as sess:
    sess = keras.backend.get_session()
    constant_graph = tf.compat.v1.graph_util.convert_variables_to_constants(
        sess,
        sess.graph_def,
        output_node_names=['the_inputs', 'dense_2/truediv'])
    with tf.gfile.GFile(os.path.join(utils.cur_path, 'logs_am', 'amModel.pb'),
                        mode='wb') as f:
        f.write(constant_graph.SerializeToString())

    #保存TF serving用文件
    builder = tf.saved_model.builder.SavedModelBuilder(
        os.path.join(utils.cur_path, 'logs_am', modelVersion))
    model_signature = tf.saved_model.signature_def_utils.predict_signature_def(
        inputs={'input': am.inputs}, outputs={'output': am.outputs})
    builder.add_meta_graph_and_variables(
        sess, [tf.saved_model.tag_constants.SERVING], {
            tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
            model_signature
        })
    builder.save()

    if x is None:
        sess.close()