Esempio n. 1
0
    #    rr['Vm2'] = rr['Vm2']*v
    #
    #    rr['Vm4'] = rr['Vm4']*v
    #
    #    rr['Vm5'] = rr['Vm5']*v
    ##
    #    rr['Vm6'] = rr['Vm6']*v

    rr['Vm7'] = rr['Vm7'] * v

    #    rr['Vm8'] = rr['Vm8']*v

    mut_data = rr.simulate(0, sim_time, 5000)

    rows, cols = get_dims(len(model_nums))
    #plt.subplot(rows, cols, i + 1)
    for col in sim_data.colnames[1:]:
        if i == 0:
            plt.plot(mut_data['time'],
                     mut_data[col],
                     color='C' + col[-1],
                     label=str(num),
                     linewidth=1)
        else:
            plt.plot(mut_data['time'],
                     mut_data[col],
                     color='C' + col[-1],
                     label=str(num),
                     linewidth=1,
                     linestyle='--')
mRNA_result = mRNA_result.sort_values('chisqr')
time = mRNA_data['time']
t = get_sim_time()
tp = get_num_points()
plt.figure()
print('top regs for ' + mRNA_name + ':')
for i in range(top_plots):
    reg = mRNA_result.iloc[i][1]
    chisqr = mRNA_result.iloc[i][2]
    params = ast.literal_eval(mRNA_result.iloc[i][3])
    sub_model = generate_sub_model(mRNA_num, reg)
    rr = te.loada(sub_model)
    for p in params:
        rr[p] = params[p]
    sim_data = rr.simulate(0, t, tp)
    rows, cols = get_dims(top_plots)
    plt.subplot(rows, cols, i + 1)
    plt.plot(time,
             mRNA_data[mRNA_name],
             color='C' + str(mRNA_num),
             label='exp')
    plt.plot(time, sim_data['[mRNA]'], color='black', label='sim')
    plt.title('reg: ' + reg + ', chisqr: ' + str(round(chisqr, 2)))
    plt.legend()
    print(reg + ', chisqr: ' + str(chisqr))
plt.suptitle('mRNA' + str(mRNA_num))
plt.show()


def p(df):
    print(df[['mRNA_num', 'regulators', 'chisqr']])
Esempio n. 3
0
#                {'species': 'P8', 'params':{'Vm4': 2}, 'ylim': (0, 6)}
#                ]

results = results.sort_values('chisqr')
#plt.figure()
for idx, model_num in enumerate([0, 1, 2, 3]):
    sim_time = 1200
    regs = ast.literal_eval(results.iloc[model_num][0])
    params = ast.literal_eval(results.iloc[model_num][2])
    model = make_model(regs)
    rr = te.loada(model)
    for p in params:
        rr[p] = params[p]
    sim_data_wild = rr.simulate(0, sim_time, 5000)
    plt.figure('model ' + str(model_num), figsize=(10, 5), dpi=100)
    rows, cols = get_dims(len(stress_tests))
    #    row = 1
    #    cols = 3
    #rows, cols = get_dims(4)
    #plt.subplot(rows, cols, idx + 1)
    for i, test in enumerate(stress_tests):
        rr.resetToOrigin()
        for p in params:
            rr[p] = params[p]
        species = '[' + test['species'] + ']'
        title = species + ', '
        for p in test['params']:
            rr[p] = rr[p] * test['params'][p]
            title = title + p + '=' + str(test['params'][p]) + 'x, '
        sim_data_mut = rr.simulate(0, sim_time, 5000)
        plt.subplot(rows, cols, i + 1)