Esempio n. 1
0
def main():
    import os
    import sys

    generation_params = CUDACodeGenerator.default_parameters()

    params = ParameterDict(
        list_timings=Param(
            False,
            description="If true timings for reading "
            "and evaluating the model is listed.",
        ),
        system_headers=Param(
            True,
            description="If true system "
            "headers needed to compile moudle is "
            "included.",
        ),
        output=Param("", description="Specify output file name"),
        **dict((name, param) for name, param in list(generation_params.items())
               if name not in ["class_code"]),
    )
    params.parse_args(usage="usage: %prog FILE [options]")  # sys.argv[2:])

    if len(sys.argv) < 2:
        raise RuntimeError("Expected a single gotran file argument")

    if not os.path.isfile(sys.argv[1]):
        raise IOError("Expected the argument to be a file")

    file_name = sys.argv[1]
    gotran2cuda(file_name, params)
    def test_optstr(self):

        base0, base1, p = default_params(sp)

        self.assertEqual(
            p.optstr(),
            " --a.abla sin --a.abli 123 --b.bblal 987 "
            "--b.bling akjh --other 0.1239 --something_very_long 3",
        )

        p.parse_args(["--a.abla", "cos", "--b.bling", "smada"])

        self.assertEqual(p.a.abla, "cos")
        self.assertEqual(p.b.bling, "smada")

        with self.assertRaises(ValueError) as cm:
            p.parse_args(["--other", "-1"])
        self.assertEqual(
            six.text_type(cm.exception),
            ("Trying to set 'other' while parsing " +
             "command line, but Illegal value 'other': -1.0 " +
             b"\xe2\x88\x89 (0, 10]".decode("utf-8")),
        )

        p = ParameterDict(list=[1, 2, 3, 4, 5])
        p.parse_args(["--list", "-1", "1", "2"])
        self.assertEqual(p.list, [-1, 1, 2])
Esempio n. 3
0
def main():

    generation_params = parameters.generation.copy()

    params = ParameterDict(
        list_timings=Param(
            False,
            description="If true timings for reading "
            "and evaluating the model is listed.",
        ),
        output=Param("", description="Specify output file name"),
        import_inside_functions=Param(
            False,
            description="Perform imports inside functions",
        ),
        namespace=OptionParam(
            "math",
            ["math", "np", "numpy", "ufl"],
            description="The math namespace of the generated code",
        ),
        **generation_params,
    )
    params.parse_args(usage="usage: %prog FILE [options]")  # sys.argv[2:])

    if len(sys.argv) < 2:
        raise RuntimeError("Expected a single gotran file argument")

    if not os.path.isfile(sys.argv[1]):
        raise IOError("Expected the argument to be a file")

    file_name = sys.argv[1]
    gotran2py(file_name, params)
def main():

    params = ParameterDict(flat_view=Param(
        True, description="List all objects in a flat view"), )
    params.parse_args(usage="usage: %prog FILE [options]")

    if len(sys.argv) < 2:
        raise RuntimeError("Expected a single gotran file argument")

    if not os.path.isfile(sys.argv[1]):
        raise IOError("Expected the argument to be a file")

    file_name = sys.argv[1]
    gotranprobe(file_name, params)
def main():

    params = ParameterDict(output=Param(
        "", description="Specify output file name"),
                           **DOLFINCodeGenerator.default_parameters())
    params.parse_args(usage="usage: %prog FILE [options]")  # sys.argv[2:])

    if len(sys.argv) < 2:
        raise RuntimeError("Expected a single gotran file argument")

    if not os.path.isfile(sys.argv[1]):
        raise IOError("Expected the argument to be a file")

    file_name = sys.argv[1]
    gotran2dolfin(file_name, params)
Esempio n. 6
0
 def default_parameters():
     default_params = parameters.generation.code.copy()
     state_repr = dict.__getitem__(default_params.states, "representation")
     param_repr = dict.__getitem__(default_params.parameters, "representation")
     return ParameterDict(state_repr=state_repr,
                          param_repr=param_repr,
                          )
Esempio n. 7
0
 def default_parameters():
     # Start with a modified subset of the global parameters
     default_params = CUDACodeGenerator.default_parameters().copy()
     return ParameterDict(
         code=default_params.code,
         solvers=default_params.solvers,
         solver=OptionParam(
             "explicit_euler",
             list(default_params.solvers.keys()),
             description="Default solver type",
         ),
         block_size=ScalarParam(
             256,
             ge=1,
             description="Number of threads per CUDA block",
         ),
         ode_substeps=ScalarParam(
             1,
             ge=1,
             description="Number of ODE steps to compute per "
             "forward function call",
         ),
         nvcc=Param("nvcc", description="Command to run nvcc compiler"),
         gpu_arch=TypelessParam(
             None,
             description="The name of the class of nVidia GPU "
             "architectures for which the CUDA input must "
             "be compiled",
         ),
         gpu_code=TypelessParam(
             None,
             description="The names of nVidia GPUs to generate code "
             "for",
         ),
         keep_cuda_code=Param(
             False,
             description="If true, CUDA compiler output is kept, and a"
             "line indicating its location in the file "
             "system is printed for debugging purposes",
         ),
         cuda_cache_dir=TypelessParam(
             None,
             description="Directory for compiler caching. Has a "
             "sensible per-user default. If False, caching "
             "is disabled.",
         ),
         # no_extern_c=Param(
         #     False,
         #     description=""),
         # cuda_include_dirs=Param(
         #     [""],
         #     description="Additional CUDA include directories"),
         nvcc_options=Param([""], description="Additional nvcc options"),
     )
Esempio n. 8
0
def main():

    params = _default_latex_params()
    params = ParameterDict(
        sympy_contraction=Param(
            True,
            description="If True sympy contraction"
            " will be used, turning (V-3)/2 into V/2-3/2",
        ),
        **params,
    )
    params.parse_args(usage="usage: %prog FILE [options]")

    if len(sys.argv) < 2:
        raise RuntimeError("Expected a single gotran file argument")

    if not os.path.isfile(sys.argv[1]):
        raise IOError("Expected the argument to be a file")

    filename = sys.argv[1]
    gotran2latex(filename, params)
def main():
    import os
    import sys

    params = ParameterDict(
        components=Param(
            [""],
            description="List all components that will be "
            "exported.",
        ),
        name=Param("", description="Specify name of exported ODE."),
    )
    params.parse_args(usage="usage: %prog FILE [options]")

    if len(sys.argv) < 2:
        raise RuntimeError("Expected a single gotran file argument")

    if not os.path.isfile(sys.argv[1]):
        raise IOError("Expected the argument to be a file")

    file_name = sys.argv[1]
    gotranexport(file_name, params)
def main():

    generation_params = MatlabCodeGenerator.default_parameters()

    params = ParameterDict(
        list_timings=Param(
            False,
            description="If true timings for reading "
            "and evaluating the model is listed.",
        ),
        output=Param("", description="Specify output file name"),
        **generation_params,
    )
    params.parse_args(usage="usage: %prog FILE [options]")  # sys.argv[2:])

    if len(sys.argv) < 2:
        raise RuntimeError("Expected a single gotran file argument")

    if not os.path.isfile(sys.argv[1]):
        raise IOError("Expected the argument to be a file")

    file_name = sys.argv[1]
    gotran2matlab(file_name, params)
def default_params(sp=True):
    params = dict(
        something_very_long="3",
        other=ScalarParam(0.1239, le=10, gt=0),
        a=default_a(),
        b=default_b(),
        const=ConstParam(3),
    )

    base0, base1 = None, None
    if sp:
        base0 = ScalarParam(5, gt=0, name="base0")
        base1 = ScalarParam(0.5, gt=0, name="base1")
        params["zlave"] = base0.sym * base1.sym

    return base0, base1, ParameterDict(**params)
Esempio n. 12
0
 def default_parameters():
     default_params = parameters.generation.code.copy()
     state_repr = dict.__getitem__(default_params.states, "representation")
     body_repr = dict.__getitem__(default_params.body, "representation")
     use_cse = dict.__getitem__(default_params.body, "use_cse")
     optimize_exprs = dict.__getitem__(default_params.body,
                                       "optimize_exprs")
     return ParameterDict(state_repr=state_repr.copy(),
                          body_repr=body_repr.copy(),
                          use_cse=use_cse.copy(),
                          optimize_exprs=optimize_exprs.copy(),
                          generate_jacobian = Param(\
                              False, description="Generate analytic jacobian "\
                              "when integrating."),\
                          generate_lu_factorization = Param(\
                              False, description="Generate analytic lu" \
                              "factorization of jacobian when integrating."),\
                          generate_forward_backward_subst = Param(\
                              False, description="Generate analytic forward" \
                              "backward substituion of factorized jacobian when "\
                              "integrating."),\
                          )
def default_a():
    return ParameterDict(abla="sin", abli=123)
def _default_params(exclude=None):
    exclude = exclude or []
    check_arg(exclude, list, itemtypes=str)

    # Add not implemented parameters to excludes
    exclude += ["max_terms", "parameter_contraction", "use_variables"]

    # Build a dict with allowed parameters
    params = {}

    if "use_state_names" not in exclude:
        # Use state names in code (compared to array with indices)
        params["use_state_names"] = Param(
            True,
            description="Use state names in code "
            "(compared to array with indices)",
        )

    if "use_parameter_names" not in exclude:
        # Use parameter names in code (compared to array with indices)
        params["use_parameter_names"] = Param(
            True,
            description="Use parameter names "
            "in code (compared to array with indices)",
        )

    if "keep_intermediates" not in exclude:
        # Keep all intermediates
        params["keep_intermediates"] = Param(
            True,
            description="Keep intermediates in code",
        )

    if "use_variables" not in exclude:
        # If True, code for altering variables are created
        # FIXME: Not used
        params["use_variables"] = Param(
            False,
            description="If True, code for altering variables are created",
        )

    if "parameter_contraction" not in exclude:
        # Find sub expressions of only parameters and create a dummy parameter
        # FIXME: Not used
        params["parameter_contraction"] = Param(
            False,
            description="Find sub expressions of only parameters "
            "and create a dummy parameter",
        )

    if "parameter_numerals" not in exclude:
        # Exchange all parameters with their initial numerical values
        params["parameter_numerals"] = Param(
            False,
            description="Exchange all parameters with their initial"
            " numerical values",
        )

    if "max_terms" not in exclude:
        # Split terms with more than max_terms into several evaluations
        # FIXME: Not used
        params["max_terms"] = ScalarParam(
            5,
            ge=2,
            description="Split terms with more than max_terms "
            "into several evaluations",
        )

    if "use_cse" not in exclude:
        # Use sympy common sub expression simplifications,
        # only when keep_intermediates is false
        params["use_cse"] = Param(
            False,
            description="Use sympy common sub expression "
            "simplifications, only when keep_intermediates is false",
        )

    if "generate_jacobian" not in exclude:
        # Generate code for the computation of the jacobian
        params["generate_jacobian"] = Param(
            True,
            description="Generate code for the computation of the jacobian",
        )

    if "transposed_jacobian" not in exclude:
        # Generate code for the computation of the jacobian
        params["transposed_jacobian"] = Param(
            False,
            description="The Jacobian is transposed",
        )

    if "generate_lu_factorization" not in exclude:
        # Generate code for the factorization of the jacobian
        params["generate_lu_factorization"] = Param(
            True,
            description="Generate code for the factorization of the jacobian",
        )

    if "generate_forward_backward_subst" not in exclude:
        # Generate code for the forward backward substitution code
        params["generate_forward_backward_subst"] = Param(
            True,
            description=
            "Generate code for the forward backward substitution code",
        )

    if "generate_linearized_evaluation" not in exclude:
        # Generate code for linearized evaluation
        # For sympy versions lower than 0.7.2 linearized computation does not work
        default_linearized_evaluation = _current_sympy_version > _V("0.7.2")

        params["generate_linearized_evaluation"] = Param(
            default_linearized_evaluation,
            description="Generate code for linearized evaluation",
        )

    # Return the ParameterDict
    return ParameterDict(**params)
def _default_latex_params():
    """
    Initializes default parameters.
    """

    params = dict()

    # Specify output file
    params["output"] = Param("", description="Specify LaTeX output file")

    # Set number of columns per page
    # FIXME: ScalarParam might cause parse_args() to crash due to non-ASCII
    # symbols.
    # params["page_columns"] = ScalarParam(
    #     1, ge=1, description="Set number of columns per page in "
    #     "LaTeX document")
    params["page_columns"] = Param(
        1,
        description="Set number of columns per page in "
        "LaTeX document",
    )

    # Set equation font size
    # FIXME: ScalarParam might cause parse_args() to crash due to non-ASCII
    # symbols.
    # params["font_size"] = ScalarParam(
    #     10, ge=1, description="Set global font size for LaTeX document")
    params["font_size"] = Param(
        10.0,
        description="Set global font size for LaTeX document",
    )

    # Set font size for mathematical expressions.
    # FIXME: ScalarParam might cause parse_args() to crash due to non-ASCII
    # symbols.
    # params["math_font_size"] = ScalarParam(
    #    1, ge=1, description="Set font size for mathematical "
    #    "expressions in LaTeX document. Uses global font size if left "
    #    "blank")
    params["math_font_size"] = Param(
        0.0,
        description="Set font size for mathematical expressions in "
        "LaTeX document. Uses global font size if left blank",
    )

    # Toggle bold equation labels
    params["bold_equation_labels"] = Param(
        True,
        description="Give equation labels a bold typeface in "
        "LaTeX document",
    )

    # If set to False, does not generate the preamble
    params["preamble"] = Param(
        True,
        description="If set to False, LaTeX document will be "
        "be generated without the preamble",
    )

    # If set to true, sets document to a landscape page layout
    params["landscape"] = Param(
        False,
        description="Set LaTeX document to landscape layout",
    )

    # Latex separator between factors in products
    params["mul_symbol"] = Param(
        "dot",
        description="Multiplication symbol for Sympy LatexPrinter",
    )

    # Flag to enable page numbers
    params["page_numbers"] = Param(True, description="Enable page numbers")

    # Flag to disable state table (currently unused)
    # params["no_state_descriptions"] = Param(
    #     False, description="Disable table column for state descriptions")

    # Flag to disable parameter table (currently unused)
    # params["no_parameter_descriptions"] = Param(
    #     False, description="Disable table column for parameter descriptions")

    # Set headline types for States, Parameters and Components
    params["section_type"] = Param(
        "section",
        description="Section type (e.g. 'section', 'subsection')",
    )

    # Set page margins
    params["margins"] = Param(
        "",
        description="Set page margins (e.g. '0.75in'). Uses LaTeX "
        "defaults if left blank",
    )

    # Set column seperator distance
    params["columnsep"] = Param(
        "",
        description="Set column separator distance (e.g. '0.25cm'). "
        "Uses LaTeX default if left blank",
    )

    # Set column separator line width
    params["columnseprule"] = Param(
        "",
        description="Set column separator line width (e.g. '0.2pt'). "
        "Uses LaTeX default if left blank",
    )

    # Flag to let the code generator attempt automatically converting
    # state and parameter names in descriptions to math-mode
    params["auto_format_description"] = Param(
        False,
        description="Automatically format state and parameter "
        "descriptions",
    )

    # Flag to toggle numbering style for equations.
    params["equation_subnumbering"] = Param(
        True,
        description="Use component-wise equation subnumbering",
    )

    params["parameter_description_cell_style"] = Param(
        "l",
        description="Set description cell type for the parameter table. "
        "Use 'X' for long descriptions, or 'p{5cm}' to set a fixed 5 cm",
    )

    params["state_description_cell_style"] = Param(
        "l",
        description="Set description cell type for the state table. "
        "Use 'X' for long descriptions, or 'p{5cm}' to set a fixed 5 cm",
    )

    # Return the ParameterDict
    return ParameterDict(**params)
Esempio n. 16
0
def main():
    import os
    import sys

    body_params = parameters.generation.code.body.copy()

    code_params = ParameterDict(
        language=OptionParam("C", ["Python", "C"]),
        body_repr=dict.__getitem__(body_params, "representation"),
        use_cse=dict.__getitem__(body_params, "use_cse"),
        optimize_exprs=dict.__getitem__(body_params, "optimize_exprs"),
        generate_jacobian=Param(
            False,
            description="Generate and use analytic " "jacobian when integrating.",
        ),
    )

    steady_state = ParameterDict(
        solve=Param(
            False,
            description="If true scipy.optimize.root is used "
            "to find a steady state for a given parameters.",
        ),
        method=OptionParam(
            "hybr",
            [
                "hybr",
                "lm",
                "broyden1",
                "broyden2",
                "anderson",
                "linearmixing",
                "diagbroyden",
                "excitingmixing",
                "krylov",
            ],
        ),
        tol=ScalarParam(1e-5, description="Tolerance for root finding algorithm."),
    )

    solver = OptionParam(
        "scipy",
        ["scipy"] + list(parameters.generation.solvers.keys()),
        description="The solver that will be used to " "integrate the ODE.",
    )

    params = ParameterDict(
        solver=solver,
        steady_state=steady_state,
        parameters=Param([""], description="Set parameter of model"),
        init_conditions=Param([""], description="Set initial condition of model"),
        tstop=ScalarParam(100.0, gt=0, description="Time for stopping simulation"),
        dt=ScalarParam(0.1, gt=0, description="Timestep for plotting."),
        plot_y=Param(["V"], description="States or monitored to plot on the y axis."),
        plot_x=Param(
            "time",
            description="Values used for the x axis. Can be time "
            "and any valid plot_y variable.",
        ),
        model_arguments=Param([""], description="Set model arguments of the model"),
        code=code_params,
        save_results=Param(
            False,
            description="If True the results will be " "saved to a 'results.csv' file.",
        ),
        basename=Param(
            "results",
            description="The basename of the results "
            "file if the 'save_results' options is True.",
        ),
    )

    params.parse_args(usage="usage: %prog FILE [options]")

    if len(sys.argv) < 2:
        error("Expected a single gotran file argument.")

    if not os.path.isfile(sys.argv[1]):
        error("Expected the argument to be a file.", exception=IOError)

    file_name = sys.argv[1]
    gotranrun(file_name, params)
Esempio n. 17
0
parameters = ParameterDict(
    # Generation parameters
    generation=ParameterDict(
        class_code=Param(
            False,
            description="If true methods are contained " "inside a class",
        ),
        # Code generation parameters
        code=ParameterDict(
            # Float precision
            float_precision=OptionParam(
                "double",
                ["double", "single"],
                description="Float precision in generated " "code.",
            ),
            # Parameter for default argument order
            default_arguments=OptionParam(
                "stp",
                ["tsp", "stp", "spt", "ts", "st"],
                description="Default input argument order: "
                "s=states, p=parameters, t=time",
            ),
            # Parameter for the time parameter name
            time=ParameterDict(name=Param("t", description="Name of time argument")),
            # Parameter for the time step parameter name
            dt=ParameterDict(
                name=Param("dt", description="Name of time step argument"),
            ),
            # Number of nodes for solvers
            n_nodes=ScalarParam(0, ge=0, description="Number of nodes for simulation"),
            # Parameters for code generation of arrays
            array=ParameterDict(
                index_format=OptionParam(
                    "[]",
                    ["[]", "{}", "()"],
                    description="The format of index notations.",
                ),
                index_offset=ScalarParam(
                    0,
                    ge=0,
                    description="A global offset to all indexed variables.",
                ),
                flatten=Param(
                    True,
                    description="If true multidimensional arrays will be "
                    "flattened. jac[2,3] -> jac[27] if the shape of jac "
                    "is (12,12)",
                ),
            ),
            # Parameters for code generation of parameters
            parameters=ParameterDict(
                field_parameters=Param(
                    [""],
                    description="A list of parameter names "
                    "which should be treated as field parameters. "
                    "Only available for CUDA backends.",
                ),
                representation=OptionParam(
                    "named",
                    ["named", "array", "numerals"],
                    description="Controls how parameters are "
                    "represented in the code. As named variables,"
                    " as an indexed array or as the default "
                    "numeral values given in the gotran model.",
                ),
                array_name=Param(
                    "parameters",
                    description="The name of the array " "representing the parameters.",
                ),
                field_array_name=Param(
                    "field_parameters",
                    description="The name of the array "
                    "representing the field parameters.",
                ),
                add_offset=Param(
                    False,
                    description="If true an offset will be "
                    "added to the index of each parameter",
                ),
                add_field_offset=Param(
                    False,
                    description="If true an offset will be "
                    "added to the index of each field parameter",
                ),
            ),
            # Parameters for code generation of states
            states=ParameterDict(
                field_states=Param(
                    [""],
                    description="A list of state names "
                    "which should be treated as field states. "
                    "Not available for all backends...",
                ),
                representation=OptionParam(
                    "named",
                    ["named", "array"],
                    description="Controls how states are "
                    "represented in the code. As named variables,"
                    " or as an indexed array.",
                ),
                array_name=Param(
                    "states",
                    description="The name of the array " "representing the states.",
                ),
                add_offset=Param(
                    False,
                    description="If true an offset will be "
                    "added to the index of each state",
                ),
            ),
            # Parameters for code generation of body expressions
            body=ParameterDict(
                use_cse=Param(
                    False,
                    description="If true will the body be "
                    "optimized using SymPy common sub expression "
                    "extraction.",
                ),
                use_enum=Param(
                    False,
                    description="If true use enumeration"
                    "data types instead of indexing.",
                ),
                in_signature=Param(
                    False,
                    description="If true the body argument "
                    "will be included in the signature.",
                ),
                representation=OptionParam(
                    "named",
                    ["named", "array", "reused_array"],
                    description="Controls how body variables are "
                    "represented in the code. As named variables,"
                    "as an indexed array or as indexed array with "
                    "reuse of unused array elements.",
                ),
                array_name=Param(
                    "body",
                    description="The name of the array " "representing the body.",
                ),
                optimize_exprs=OptionParam(
                    "none",
                    ["none", "numerals", "numerals_symbols"],
                    description="Remove body expressions as "
                    "intermediates, which contains only a "
                    "numeral or numerals and a symbol.",
                ),
            ),
        ),
        # Parameters for automatic generation of specific functions
        functions=ParameterDict(
            rhs=ParameterDict(
                generate=Param(
                    True,
                    description="Generate code for the "
                    "evaluation of the right hand side evaluation.",
                ),
                function_name=Param(
                    "rhs",
                    description="The name of " "the generated function.",
                ),
                result_name=Param(
                    "values",
                    description="The name of " "the result argument.",
                ),
            ),
            monitored=ParameterDict(
                generate=Param(
                    True,
                    description="Generate code for the "
                    "evaluation of monitored intermediates.",
                ),
                function_name=Param(
                    "monitor",
                    description="The name of " "the generated function.",
                ),
                result_name=Param(
                    "monitored",
                    description="The name of " "the result argument.",
                ),
            ),
            jacobian=ParameterDict(
                generate=Param(
                    False,
                    description="Generate code for the "
                    "evaluation of the jacobian of the right hand "
                    "side.",
                ),
                function_name=Param(
                    "compute_jacobian",
                    description="The name " "of the generated function.",
                ),
                result_name=Param(
                    "jac",
                    description="The name of " "the result argument.",
                ),
            ),
            lu_factorization=ParameterDict(
                generate=Param(
                    False,
                    description="Generate code for "
                    "symbolicly factorize the jacobian.",
                ),
                function_name=Param(
                    "lu_factorize",
                    description="The name " "of the generated function.",
                ),
            ),
            forward_backward_subst=ParameterDict(
                generate=Param(
                    False,
                    description="Generate code for the "
                    "symbolic forward backward substitution of the "
                    "jacobian.",
                ),
                function_name=Param(
                    "forward_backward_subst",
                    description="The name of the generated " "function.",
                ),
                residual_name=Param(
                    "F",
                    description="The name of " "the residual argument.",
                ),
                result_name=Param(
                    "dx",
                    description="The name of " "the incriment argument.",
                ),
            ),
            componentwise_rhs_evaluation=ParameterDict(
                generate=Param(
                    False,
                    description="If true, generate code for "
                    "computing componentwise evaluation of the rhs.",
                ),
                function_name=Param(
                    "componentwise_rhs",
                    description="The name of the generated " "function.",
                ),
            ),
            linearized_rhs_evaluation=ParameterDict(
                generate=Param(
                    False,
                    description="If true, generate code for "
                    "computing linearized evaluation of linear rhs "
                    "terms.",
                ),
                function_name=Param(
                    "linearized_rhs",
                    description="The name of the generated " "function.",
                ),
                include_rhs=Param(
                    False,
                    description="If True the rhs will be "
                    "included as a result argument.",
                ),
                only_linear=Param(
                    True,
                    description="If True only linearized "
                    "expressions for the linear derivatives will "
                    "be generated.",
                ),
                result_names=Param(
                    ["linearized", "rhs"],
                    description="The name of " "the two results arguments.",
                ),
            ),
        ),
        # Parameters for automatic generation of lists/arrays of names for states and parameters
        lists=ParameterDict(
            parameter_names=ParameterDict(
                generate=Param(False, description="Generate list of parameter names"),
                name=Param("parameter_names", description="Name of list variable"),
            ),
            state_names=ParameterDict(
                generate=Param(False, description="Generate list of state names"),
                name=Param("state_names", description="Name of list variable"),
            ),
        ),
        # Parameters for automatic generation of specific solver functions
        solvers=ParameterDict(
            explicit_euler=ParameterDict(
                generate=Param(
                    False,
                    description="If true, generate code for "
                    "solving an ODE using explicit Euler method.",
                ),
                function_name=Param(
                    "forward_explicit_euler",
                    description="The name of the generated " "function.",
                ),
            ),
            rush_larsen=ParameterDict(
                generate=Param(
                    False,
                    description="If true, generate code for "
                    "solving an ODE using Rush Larsen method.",
                ),
                function_name=Param(
                    "forward_rush_larsen",
                    description="The name of the generated " "function.",
                ),
                delta=ScalarParam(
                    1e-8,
                    gt=0,
                    lt=1.0,
                    description="Value to "
                    "safeguard the evaluation of the rush larsen "
                    "step.",
                ),
            ),
            generalized_rush_larsen=ParameterDict(
                generate=Param(
                    False,
                    description="If true, generate code for "
                    "solving an ODE using generalized Rush Larsen method.",
                ),
                function_name=Param(
                    "forward_generalized_rush_larsen",
                    description="The name of the generated " "function.",
                ),
                delta=ScalarParam(
                    1e-8,
                    gt=0,
                    lt=1.0,
                    description="Value to "
                    "safeguard the evaluation of the rush larsen "
                    "step.",
                ),
            ),
            hybrid_generalized_rush_larsen=ParameterDict(
                generate=Param(
                    False,
                    description="If true, generate code for "
                    "solving an ODE using a hybrid generalized Rush Larsen method.",
                ),
                function_name=Param(
                    "forward_hybrid_generalized_rush_larsen",
                    description="The name of the generated " "function.",
                ),
                delta=ScalarParam(
                    1e-8,
                    gt=0,
                    lt=1.0,
                    description="Value to "
                    "safeguard the evaluation of the rush larsen "
                    "step.",
                ),
                stiff_states=Param(
                    "",
                    name="stiff_states",
                    description="List of names of state variables that should "
                    "be solved with the GRL1 scheme that has better stability"
                    "than explicit Euler",
                ),
            ),
            simplified_implicit_euler=ParameterDict(
                generate=Param(
                    False,
                    description="If true, generate code for "
                    "solving an ODE using Rush Larsen method.",
                ),
                function_name=Param(
                    "forward_simplified_implicit_euler",
                    description="The name of the generated " "function.",
                ),
                numeric_jacobian=Param(
                    False,
                    description="Use numeric " "calculated diagonal jacobian.",
                ),
            ),
        ),
    ),
    # Parameters for different input
    input=ParameterDict(
        # Parameters for CellML input
        cellml=ParameterDict(
            change_state_names=Param(
                [],
                description="A list of state names "
                "which should be changed to not interfere "
                "with for example a parameter name.",
            ),
            grouping=OptionParam(
                "encapsulation",
                ["encapsulation", "containment"],
                description="Determines what type of grouping "
                "should be used when the cellml model is parsed.",
            ),
            use_sympy_integers=Param(
                False,
                description="If yes dedicated sympy "
                "integers will be used instead of the "
                "integers 0-10. This will turn 1/2 into a "
                "sympy rational instead of the float 0.5.",
            ),
            strip_parent_name=Param(
                True,
                description="If True strip the name from "
                "the child component it contains the name of the "
                "parent component.",
            ),
        ),
    ),
)
def default_b():
    return ParameterDict(
        bblal=987,
        bling=OptionParam("akjh", ["akjh", "bla", "jada", "smada"]),
    )