def my_demo(file_list, model_path): Net_OK = ['Res101_SFCN', 'LCN'] if (cfg.NET not in Net_OK): print('net is not Res101_SFCN demo not work') return net = CrowdCounter(cfg.GPU_ID, cfg.NET) new_weight_dict = torch.load(model_path) if (cfg.GPU_ID == [0]): new_weight_dict = re_name_weight(new_weight_dict) net.load_state_dict(new_weight_dict) net.cuda() net.eval() print('net eval is ok=================') f1 = plt.figure(1) for filename in file_list: print(filename) img = Image.open(filename) if img.mode == 'L': img = img.convert('RGB') img = img_transform(img) with torch.no_grad(): img = Variable(img[None, :, :, :]).cuda() start = time.time() for i in range(1000): pred_map = net.test_forward(img) pred_map.cpu() end = time.time() density_pre = pred_map.squeeze().cpu().numpy() / 100. num_people = int(np.sum(density_pre)) print('in this picture,there are ', num_people, ' people') print('Do once forward need {:.3f}ms '.format( (end - start) * 1000 / 100.0))
def main(params): H, W = params['image_size'] mean_std = ([0.452016860247, 0.447249650955, 0.431981861591], [0.23242045939, 0.224925786257, 0.221840232611]) data_transform = transforms.Compose([ transforms.Resize((H, W)), transforms.ToTensor(), transforms.Normalize(*mean_std) ]) net = CrowdCounter([0], params['model']) net.load_state_dict(torch.load(params['model_path'])) net.cuda() net.eval() video_list = np.sort(glob(params['dataset_path'] + '/*')) for v in video_list: print(v) outputdir = params['outputdir_prefix'] + '/%d_%d/' % (H, W) os.makedirs(outputdir, exist_ok=True) file_list = np.sort(glob(v + '/*.jpg')) imgs = torch.zeros(len(file_list), 3, H, W) for i, f in enumerate(tqdm(file_list)): imgs[i] = data_transform(Image.open(f)) train_dataset = torch.utils.data.TensorDataset( imgs, torch.zeros(len(file_list))) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=params['batch_size'], shuffle=False) pred_map = [] for x, y in tqdm(train_loader): tmp = net.test_forward(x.cuda()).squeeze().detach().cpu().numpy() if (len(tmp.shape) == 2): tmp = tmp[np.newaxis] pred_map.append(tmp) pred_map = np.concatenate(pred_map) np.savez_compressed(outputdir + os.path.basename(v), pred_map)
def main(): cfg_file = open('./config.py',"r") cfg_lines = cfg_file.readlines() with open(log_txt, 'a') as f: f.write(''.join(cfg_lines) + '\n\n\n\n') if len(cfg.TRAIN.GPU_ID)==1: torch.cuda.set_device(cfg.TRAIN.GPU_ID[0]) torch.backends.cudnn.benchmark = True net = CrowdCounter(ce_weights=train_set.wts).cuda() if len(cfg.TRAIN.GPU_ID)>1: net = torch.nn.DataParallel(net, device_ids=cfg.TRAIN.GPU_ID).cuda() else: net=net.cuda() net.train() optimizer = optim.Adam([ {'params': [param for name, param in net.named_parameters() if 'seg' in name], 'lr': cfg.TRAIN.SEG_LR}, {'params': [param for name, param in net.named_parameters() if 'seg' not in name], 'lr': cfg.TRAIN.LR} ]) i_tb = 0 for epoch in range(cfg.TRAIN.MAX_EPOCH): _t['train time'].tic() i_tb,model_path = train(train_loader, net, optimizer, epoch, i_tb) _t['train time'].toc(average=False) print 'train time of one epoch: {:.2f}s'.format(_t['train time'].diff) if epoch%cfg.VAL.FREQ!=0: continue _t['val time'].tic() validate(val_loader, model_path, epoch, restore_transform) _t['val time'].toc(average=False) print 'val time of one epoch: {:.2f}s'.format(_t['val time'].diff)
def validate(val_loader, model_path, epoch, restore): net = CrowdCounter(ce_weights=train_set.wts) net.load_state_dict(torch.load(model_path)) net.cuda() net.eval() print '=' * 50 val_loss_mse = [] val_loss_cls = [] val_loss_seg = [] val_loss = [] mae = 0.0 mse = 0.0 for vi, data in enumerate(val_loader, 0): img, gt_map, gt_cnt, roi, gt_roi, gt_seg = data # pdb.set_trace() img = Variable(img, volatile=True).cuda() gt_map = Variable(gt_map, volatile=True).cuda() gt_seg = Variable(gt_seg, volatile=True).cuda() roi = Variable(roi[0], volatile=True).cuda().float() gt_roi = Variable(gt_roi[0], volatile=True).cuda() pred_map, pred_cls, pred_seg = net(img, gt_map, roi, gt_roi, gt_seg) loss1, loss2, loss3 = net.f_loss() val_loss_mse.append(loss1.data) val_loss_cls.append(loss2.data) val_loss_seg.append(loss3.data) val_loss.append(net.loss.data) pred_map = pred_map.data.cpu().numpy() gt_map = gt_map.data.cpu().numpy() pred_seg = pred_seg.cpu().max(1)[1].squeeze_(1).data.numpy() gt_seg = gt_seg.data.cpu().numpy() # pdb.set_trace() # pred_map = pred_map*pred_seg gt_count = np.sum(gt_map) pred_cnt = np.sum(pred_map) mae += abs(gt_count - pred_cnt) mse += ((gt_count - pred_cnt) * (gt_count - pred_cnt)) # pdb.set_trace() mae = mae / val_set.get_num_samples() mse = np.sqrt(mse / val_set.get_num_samples()) loss1 = np.mean(np.array(val_loss_mse))[0] loss2 = np.mean(np.array(val_loss_cls))[0] loss3 = np.mean(np.array(val_loss_seg))[0] loss = np.mean(np.array(val_loss))[0] print '=' * 50 print exp_name print ' ' + '-' * 20 print ' [mae %.1f mse %.1f], [val loss %.8f %.8f %.4f %.4f]' % ( mae, mse, loss, loss1, loss2, loss3) print ' ' + '-' * 20 print '=' * 50
def test(file_list, model_path): net = CrowdCounter(cfg.GPU_ID, cfg.NET) net.load_state_dict(torch.load(model_path), strict=False) net.cuda() net.eval() f1 = plt.figure(1) gts = [] preds = [] for filename in file_list: print(filename) imgname = dataRoot + '/img/' + filename filename_no_ext = filename.split('.')[0] '''denname = dataRoot + '/den/' + filename_no_ext + '.csv' den = pd.read_csv(denname, sep=',',header=None).values den = den.astype(np.float32, copy=False) ''' img = Image.open(imgname) if img.mode == 'L': img = img.convert('RGB') img = img_transform(img) #gt = np.sum(den) with torch.no_grad(): img = Variable(img[None, :, :, :]).cuda() pred_map = net.test_forward(img) sio.savemat(exp_name + '/pred/' + filename_no_ext + '.mat', {'data': pred_map.squeeze().cpu().numpy() / 100.}) #sio.savemat(exp_name+'/gt/'+filename_no_ext+'.mat',{'data':den}) pred_map = pred_map.cpu().data.numpy()[0, 0, :, :] pred = np.sum(pred_map) / 100.0 pred_map = pred_map / np.max(pred_map + 1e-20) #den = den/np.max(den+1e-20) '''den_frame = plt.gca() plt.imshow(den, 'jet') den_frame.axes.get_yaxis().set_visible(False) den_frame.axes.get_xaxis().set_visible(False) den_frame.spines['top'].set_visible(False) den_frame.spines['bottom'].set_visible(False) den_frame.spines['left'].set_visible(False) den_frame.spines['right'].set_visible(False) plt.savefig(exp_name+'/'+filename_no_ext+'_gt_'+str(int(gt))+'.png',\ bbox_inches='tight',pad_inches=0,dpi=150) plt.close() ''' # sio.savemat(exp_name+'/'+filename_no_ext+'_gt_'+str(int(gt))+'.mat',{'data':den}) pred_frame = plt.gca() plt.imshow(pred_map, 'jet') pred_frame.axes.get_yaxis().set_visible(False) pred_frame.axes.get_xaxis().set_visible(False) pred_frame.spines['top'].set_visible(False) pred_frame.spines['bottom'].set_visible(False) pred_frame.spines['left'].set_visible(False) pred_frame.spines['right'].set_visible(False) plt.savefig(exp_name+'/'+filename_no_ext+'_pred_'+str(float(pred))+'.png',\ bbox_inches='tight',pad_inches=0,dpi=150) plt.close() # sio.savemat(exp_name+'/'+filename_no_ext+'_pred_'+str(float(pred))+'.mat',{'data':pred_map}) '''diff = den-pred_map
def test(file_list, model_path): net = CrowdCounter(cfg.GPU_ID, 'RAZ_loc') net.cuda() net.load_state_dict(torch.load(model_path)) net.eval() gts = [] preds = [] record = open('submmited_raz_loc_0.5-0512.txt', 'w+') for infos in file_list: filename = infos.split()[0] imgname = os.path.join(dataRoot, 'img', filename + '.jpg') img = Image.open(imgname) ori_img = Image.open(os.path.join(ori_data, filename + '.jpg')) ori_w,ori_h = ori_img.size w,h = img.size ratio_w = ori_w/w ratio_h = ori_h/h if img.mode == 'L': img = img.convert('RGB') img = img_transform(img)[None, :, :, :] with torch.no_grad(): img = Variable(img).cuda() crop_imgs, crop_masks = [], [] b, c, h, w = img.shape rh, rw = 576, 768 for i in range(0, h, rh): gis, gie = max(min(h-rh, i), 0), min(h, i+rh) for j in range(0, w, rw): gjs, gje = max(min(w-rw, j), 0), min(w, j+rw) crop_imgs.append(img[:, :, gis:gie, gjs:gje]) mask = torch.zeros(b, 1, h, w).cuda() mask[:, :, gis:gie, gjs:gje].fill_(1.0) crop_masks.append(mask) crop_imgs, crop_masks = map(lambda x: torch.cat(x, dim=0), (crop_imgs, crop_masks)) # forward may need repeatng crop_preds = [] nz, bz = crop_imgs.size(0), 1 for i in range(0, nz, bz): gs, gt = i, min(nz, i+bz) crop_pred = net.test_forward(crop_imgs[gs:gt]) crop_pred = F.softmax(crop_pred,dim=1).data[0,1,:,:] crop_pred = crop_pred[None,:,:] crop_preds.append(crop_pred) crop_preds = torch.cat(crop_preds, dim=0) # splice them to the original size idx = 0 pred_map = torch.zeros(b, 1, h, w).cuda() for i in range(0, h, rh): gis, gie = max(min(h-rh, i), 0), min(h, i+rh) for j in range(0, w, rw): gjs, gje = max(min(w-rw, j), 0), min(w, j+rw) pred_map[:, :, gis:gie, gjs:gje] += crop_preds[idx] idx += 1 # for the overlapping area, compute average value mask = crop_masks.sum(dim=0).unsqueeze(0) pred_map = pred_map / mask pred_map = F.avg_pool2d(pred_map,3,1,1) maxm = F.max_pool2d(pred_map,3,1,1) maxm = torch.eq(maxm,pred_map) pred_map = maxm*pred_map pred_map[pred_map<0.5]=0 pred_map = pred_map.bool().long() pred_map = pred_map.cpu().data.numpy()[0,0,:,:] ids = np.array(np.where(pred_map==1)) #y,x ori_ids_y = ids[0,:]*ratio_h ori_ids_x = ids[1,:]*ratio_w ids = np.vstack((ori_ids_x,ori_ids_y)).astype(np.int16)#x,y loc_str = '' for i_id in range(ids.shape[1]): loc_str = loc_str + ' ' + str(ids[0][i_id]) + ' ' + str(ids[1][i_id]) # x, y pred = ids.shape[1] print(f'{filename} {pred:d}{loc_str}', file=record) print(f'{filename} {pred:d}') record.close()
def test(file_list, model_path): net = CrowdCounter(cfg.GPU_ID, 'Res101_SFCN') net.cuda() lastest_state = torch.load(model_path) net.load_state_dict(lastest_state['net']) #net.load_state_dict(torch.load(model_path)) net.eval() #f = open('submmited.txt', 'w+') for infos in file_list: filename = infos.split()[0] #print(filename) imgname = os.path.join(dataRoot, 'img', filename + '.jpg') img = Image.open(imgname) dotname = imgname.replace('img', 'dot').replace('jpg', 'png') dot_map = Image.open(dotname) dot_map = dot_transform(dot_map) if img.mode == 'L': img = img.convert('RGB') img = img_transform(img)[None, :, :, :] dot_map = dot_map[None, :, :, :] with torch.no_grad(): img = Variable(img).cuda() dot_map = Variable(dot_map).cuda() algt = torch.sum(dot_map).item() crop_imgs, crop_dots, crop_masks = [], [], [] b, c, h, w = img.shape rh, rw = 576, 768 for i in range(0, h, rh): gis, gie = max(min(h - rh, i), 0), min(h, i + rh) for j in range(0, w, rw): gjs, gje = max(min(w - rw, j), 0), min(w, j + rw) crop_imgs.append(img[:, :, gis:gie, gjs:gje]) crop_dots.append(dot_map[:, :, gis:gie, gjs:gje]) mask = torch.zeros_like(dot_map).cuda() mask[:, :, gis:gie, gjs:gje].fill_(1.0) crop_masks.append(mask) crop_imgs, crop_dots, crop_masks = map( lambda x: torch.cat(x, dim=0), (crop_imgs, crop_dots, crop_masks)) # forward may need repeatng crop_preds, crop_dens = [], [] nz, bz = crop_imgs.size(0), 1 for i in range(0, nz, bz): gs, gt = i, min(nz, i + bz) crop_pred, crop_den = net.forward(crop_imgs[gs:gt], crop_dots[gs:gt]) crop_preds.append(crop_pred) crop_dens.append(crop_den) crop_preds = torch.cat(crop_preds, dim=0) crop_dens = torch.cat(crop_dens, dim=0) # splice them to the original size idx = 0 pred_map = torch.zeros_like(dot_map).cuda() den_map = torch.zeros_like(dot_map).cuda() for i in range(0, h, rh): gis, gie = max(min(h - rh, i), 0), min(h, i + rh) for j in range(0, w, rw): gjs, gje = max(min(w - rw, j), 0), min(w, j + rw) pred_map[:, :, gis:gie, gjs:gje] += crop_preds[idx] den_map[:, :, gis:gie, gjs:gje] += crop_dens[idx] idx += 1 # for the overlapping area, compute average value mask = crop_masks.sum(dim=0).unsqueeze(0) pred_map = pred_map / mask den_map = den_map / mask pred_map /= LOG_PARA pred = torch.sum(pred_map).item() pred_map = pred_map.cpu().data.numpy()[0, 0, :, :] den_map = den_map.cpu().data.numpy()[0, 0, :, :] print(pred_map.sum(), den_map.sum()) psnr = calc_psnr(den_map, pred_map) ssim = calc_ssim(den_map, pred_map) if psnr == 'NaN': plt.imsave(os.path.join( 'pred', f'[{filename}]_[{pred:.2f}|{algt:.2f}]_[{psnr}]_[{ssim:.4f}].png' ), pred_map, cmap='jet') else: plt.imsave(os.path.join( 'pred', f'[{filename}]_[{pred:.2f}|{algt:.2f}]_[{psnr:.2f}]_[{ssim:.4f}].png' ), pred_map, cmap='jet')
def validate(val_loader, model_path, epoch, restore): net = CrowdCounter(ce_weights=train_set.wts) net.load_state_dict(torch.load(model_path)) net.cuda() net.eval() print '='*50 val_loss_mse = [] val_loss_cls = [] val_loss_seg = [] val_loss = [] mae = 0.0 mse = 0.0 for vi, data in enumerate(val_loader, 0): img, gt_map, gt_cnt, roi, gt_roi, gt_seg = data # pdb.set_trace() img = Variable(img, volatile=True).cuda() gt_map = Variable(gt_map, volatile=True).cuda() gt_seg = Variable(gt_seg, volatile=True).cuda() roi = Variable(roi[0], volatile=True).cuda().float() gt_roi = Variable(gt_roi[0], volatile=True).cuda() pred_map,pred_cls,pred_seg = net(img, gt_map, roi, gt_roi, gt_seg) loss1,loss2,loss3 = net.f_loss() val_loss_mse.append(loss1.data) val_loss_cls.append(loss2.data) val_loss_seg.append(loss3.data) val_loss.append(net.loss.data) pred_map = pred_map.data.cpu().numpy() gt_map = gt_map.data.cpu().numpy() pred_seg = pred_seg.cpu().max(1)[1].squeeze_(1).data.numpy() gt_seg = gt_seg.data.cpu().numpy() gt_count = np.sum(gt_map) pred_cnt = np.sum(pred_map) mae += abs(gt_count-pred_cnt) mse += ((gt_count-pred_cnt)*(gt_count-pred_cnt)) x = [] if vi==0: for idx, tensor in enumerate(zip(img.cpu().data, pred_map, gt_map, pred_seg, gt_seg)): if idx>cfg.VIS.VISIBLE_NUM_IMGS: break # pdb.set_trace() pil_input = restore(tensor[0]/255.) pil_label = torch.from_numpy(tensor[2]/(tensor[2].max()+1e-10)).repeat(3,1,1) pil_output = torch.from_numpy(tensor[1]/(tensor[1].max()+1e-10)).repeat(3,1,1) pil_gt_seg = torch.from_numpy(tensor[4]).repeat(3,1,1).float() pil_pred_seg = torch.from_numpy(tensor[3]).repeat(3,1,1).float() # pdb.set_trace() x.extend([pil_to_tensor(pil_input.convert('RGB')), pil_label, pil_output, pil_gt_seg, pil_pred_seg]) x = torch.stack(x, 0) x = vutils.make_grid(x, nrow=5, padding=5) writer.add_image(exp_name + '_epoch_' + str(epoch+1), (x.numpy()*255).astype(np.uint8)) mae = mae/val_set.get_num_samples() mse = np.sqrt(mse/val_set.get_num_samples()) ''' loss1 = float(np.mean(np.array(val_loss_mse))) loss2 = float(np.mean(np.array(val_loss_cls))) loss3 = float(np.mean(np.array(val_loss_seg))) loss = float(np.mean(np.array(val_loss)))''' loss1 = np.mean(np.array(val_loss_mse))[0] loss2 = np.mean(np.array(val_loss_cls))[0] loss3 = np.mean(np.array(val_loss_seg))[0] loss = np.mean(np.array(val_loss))[0] writer.add_scalar('val_loss_mse', loss1, epoch + 1) writer.add_scalar('val_loss_cls', loss2, epoch + 1) writer.add_scalar('val_loss_seg', loss3, epoch + 1) writer.add_scalar('val_loss', loss, epoch + 1) writer.add_scalar('mae', mae, epoch + 1) writer.add_scalar('mse', mse, epoch + 1) if mae < train_record['best_mae']: train_record['best_mae'] = mae train_record['mse'] = mse train_record['corr_epoch'] = epoch + 1 train_record['corr_loss'] = loss print '='*50 print exp_name print ' '+ '-'*20 print ' [mae %.1f mse %.1f], [val loss %.8f %.8f %.4f %.4f]' % (mae, mse, loss, loss1, loss2, loss3) print ' '+ '-'*20 # pdb.set_trace() print '[best] [mae %.1f mse %.1f], [loss %.8f], [epoch %d]' % (train_record['best_mae'], train_record['mse'], train_record['corr_loss'], train_record['corr_epoch']) print '='*50
# model_path='./exp/VGG_Decoder_Original_NTU_normal_ab_only_50/05-18_01-23_NTU_VGG_DECODER_1e-06_normal_ab_only/all_ep_27_mae_0.70_mse_0.96.pth' # model_path = './exp/Res50_Original_GCC_Inducing_CAP_0.0001_epochs_100_Finetuning/0.7/03-08_12-37_GCC_Res50__1e-05_finetuned_rd/all_ep_29_mae_32.5_mse_93.2.pth' # pruned_model_path = './exp/Res50_Original_GCC_Inducing_CAP_0.0001_epochs_100_Pruning/0.7/resnet50_GCC_pruned_0.7.pth.tar' # pruned_model_path = './exp/VGG_Decoder_GCC_Pretrained_Pruning/0.4/VGG_Decoder_GCC_pruned_0.4.pth.tar' # model_path='05-ResNet-50_all_ep_35_mae_32.4_mse_76.1.pth' net = CrowdCounter(cfg.GPU_ID, cfg.NET) # net = CrowdCounter(cfg.GPU_ID,cfg.NET,cfg=torch.load(pruned_model_path)['cfg']) state_dict = torch.load(args.model_path) try: net.load_state_dict(state_dict['net']) except KeyError: net.load_state_dict(state_dict) net.cuda() net.eval() sum([param.nelement() for param in net.parameters()]) def get_concat_h(im1, im2): dst = Image.new('RGB', (im1.width + im2.width, im1.height)) dst.paste(im1, (0, 0)) dst.paste(im2, (im1.width, 0)) return dst cm = plt.get_cmap('jet') file_folder = [] file_name = []
def test(file_list, model_path): net = CrowdCounter(cfg.GPU_ID, cfg.NET) net.cuda() net.load_state_dict(torch.load(model_path)) net.eval() gts = [] preds = [] f = open(f'submmited.txt', 'w+') for infos in file_list: filename = infos[:-1] imgname = os.path.join(dataRoot, 'img', filename + '.jpg') img = Image.open(imgname) if img.mode == 'L': img = img.convert('RGB') img = img_transform(img)[None, :, :, :] with torch.no_grad(): img = Variable(img).cuda() crop_imgs, crop_masks = [], [] b, c, h, w = img.shape rh, rw = 576, 768 for i in range(0, h, rh): gis, gie = max(min(h - rh, i), 0), min(h, i + rh) for j in range(0, w, rw): gjs, gje = max(min(w - rw, j), 0), min(w, j + rw) crop_imgs.append(img[:, :, gis:gie, gjs:gje]) mask = torch.zeros(b, 1, h, w).cuda() mask[:, :, gis:gie, gjs:gje].fill_(1.0) crop_masks.append(mask) crop_imgs, crop_masks = map(lambda x: torch.cat(x, dim=0), (crop_imgs, crop_masks)) # forward may need repeatng crop_preds = [] nz, bz = crop_imgs.size(0), 1 for i in range(0, nz, bz): gs, gt = i, min(nz, i + bz) crop_pred = net.test_forward(crop_imgs[gs:gt]) crop_preds.append(crop_pred) crop_preds = torch.cat(crop_preds, dim=0) # splice them to the original size idx = 0 pred_map = torch.zeros(b, 1, h, w).cuda() for i in range(0, h, rh): gis, gie = max(min(h - rh, i), 0), min(h, i + rh) for j in range(0, w, rw): gjs, gje = max(min(w - rw, j), 0), min(w, j + rw) pred_map[:, :, gis:gie, gjs:gje] += crop_preds[idx] idx += 1 # for the overlapping area, compute average value mask = crop_masks.sum(dim=0).unsqueeze(0) pred_map = pred_map / mask pred_map = pred_map.cpu().data.numpy()[0, 0, :, :] pred = np.sum(pred_map) / LOG_PARA print(f'{filename} {pred:.4f}', file=f) print(f'{filename} {pred:.4f}') f.close()
def test(file_list, model_path): net = CrowdCounter() net.load_state_dict(torch.load(model_path)) # net = tr_net.CNN() # net.load_state_dict(torch.load(model_path)) net.cuda() net.eval() maes = [] mses = [] for filename in file_list: print filename imgname = dataRoot + '/img/' + filename filename_no_ext = filename.split('.')[0] denname = dataRoot + '/den/' + filename_no_ext + '.csv' den = pd.read_csv(denname, sep=',',header=None).values den = den.astype(np.float32, copy=False) img = Image.open(imgname) if img.mode == 'L': img = img.convert('RGB') # prepare wd_1, ht_1 = img.size # pdb.set_trace() if wd_1 < cfg.DATA.STD_SIZE[1]: dif = cfg.DATA.STD_SIZE[1] - wd_1 img = ImageOps.expand(img, border=(0,0,dif,0), fill=0) pad = np.zeros([ht_1,dif]) den = np.array(den) den = np.hstack((den,pad)) if ht_1 < cfg.DATA.STD_SIZE[0]: dif = cfg.DATA.STD_SIZE[0] - ht_1 img = ImageOps.expand(img, border=(0,0,0,dif), fill=0) pad = np.zeros([dif,wd_1]) den = np.array(den) den = np.vstack((den,pad)) img = img_transform(img) gt = np.sum(den) img = Variable(img[None,:,:,:],volatile=True).cuda() #forward pred_map = net.test_forward(img) pred_map = pred_map.cpu().data.numpy()[0,0,:,:] pred = np.sum(pred_map)/100.0 maes.append(abs(pred-gt)) mses.append((pred-gt)*(pred-gt)) # vis pred_map = pred_map/np.max(pred_map+1e-20) pred_map = pred_map[0:ht_1,0:wd_1] den = den/np.max(den+1e-20) den = den[0:ht_1,0:wd_1] den_frame = plt.gca() plt.imshow(den, 'jet') den_frame.axes.get_yaxis().set_visible(False) den_frame.axes.get_xaxis().set_visible(False) den_frame.spines['top'].set_visible(False) den_frame.spines['bottom'].set_visible(False) den_frame.spines['left'].set_visible(False) den_frame.spines['right'].set_visible(False) plt.savefig(exp_name+'/'+filename_no_ext+'_gt_'+str(int(gt))+'.png',\ bbox_inches='tight',pad_inches=0,dpi=150) plt.close() # sio.savemat(exp_name+'/'+filename_no_ext+'_gt_'+str(int(gt))+'.mat',{'data':den}) pred_frame = plt.gca() plt.imshow(pred_map, 'jet') pred_frame.axes.get_yaxis().set_visible(False) pred_frame.axes.get_xaxis().set_visible(False) pred_frame.spines['top'].set_visible(False) pred_frame.spines['bottom'].set_visible(False) pred_frame.spines['left'].set_visible(False) pred_frame.spines['right'].set_visible(False) plt.savefig(exp_name+'/'+filename_no_ext+'_pred_'+str(float(pred))+'.png',\ bbox_inches='tight',pad_inches=0,dpi=150) plt.close() # sio.savemat(exp_name+'/'+filename_no_ext+'_pred_'+str(float(pred))+'.mat',{'data':pred_map}) diff = den-pred_map diff_frame = plt.gca() plt.imshow(diff, 'jet') plt.colorbar() diff_frame.axes.get_yaxis().set_visible(False) diff_frame.axes.get_xaxis().set_visible(False) diff_frame.spines['top'].set_visible(False) diff_frame.spines['bottom'].set_visible(False) diff_frame.spines['left'].set_visible(False) diff_frame.spines['right'].set_visible(False) plt.savefig(exp_name+'/'+filename_no_ext+'_diff.png',\ bbox_inches='tight',pad_inches=0,dpi=150) plt.close() # sio.savemat(exp_name+'/'+filename_no_ext+'_diff.mat',{'data':diff}) print '[file %s]: [pred %.2f], [gt %.2f]' % (filename, pred, gt) print np.average(np.array(maes)) print np.sqrt(np.average(np.array(mses)))
def test(file_list, model_path): net = CrowdCounter(cfg.GPU_ID, cfg.NET) net.load_state_dict(torch.load(model_path)) net.cuda() net.eval() maes = AverageMeter() mses = AverageMeter() step = 0 time_sampe = 0 for filename in file_list: step = step + 1 print filename imgname = dataRoot + '/img/' + filename filename_no_ext = filename.split('.')[0] denname = dataRoot + '/den/' + filename_no_ext + '.csv' den = pd.read_csv(denname, sep=',', header=None).values # den = sio.loadmat(dataRoot + '/den/' + filename_no_ext + '.mat') # den = den['map'] den = den.astype(np.float32, copy=False) img = Image.open(imgname) if img.mode == 'L': img = img.convert('RGB') # prepare wd_1, ht_1 = img.size # pdb.set_trace() # if wd_1 < 1024: # dif = 1024 - wd_1 # img = ImageOps.expand(img, border=(0, 0, dif, 0), fill=0) # pad = np.zeros([ht_1, dif]) # den = np.array(den) # den = np.hstack((den, pad)) # # if ht_1 < 768: # dif = 768 - ht_1 # img = ImageOps.expand(img, border=(0, 0, 0, dif), fill=0) # pad = np.zeros([dif, wd_1]) # den = np.array(den) # den = np.vstack((den, pad)) img = img_transform(img) gt_count = np.sum(den) img = Variable(img[None, :, :, :], volatile=True).cuda() # forward pred_map = net.test_forward(img) pred_map = pred_map.cpu().data.numpy()[0, 0, :, :] pred_cnt = np.sum(pred_map) / 2550.0 pred_map = pred_map / np.max(pred_map + 1e-20) pred_map = pred_map[0:ht_1, 0:wd_1] den = den / np.max(den + 1e-20) den = den[0:ht_1, 0:wd_1] maes.update(abs(gt_count - pred_cnt)) mses.update((gt_count - pred_cnt) * (gt_count - pred_cnt)) mae = maes.avg mse = np.sqrt(mses.avg) print '\n[MAE: %fms][MSE: %fms]' % (mae, mse)
def test(file_list, model_path): net = CrowdCounter(cfg.GPU_ID, cfg.NET) net.load_state_dict(torch.load(model_path)) net.cuda() net.eval() step = 0 for filename in file_list: step = step + 1 print filename imgname = dataRoot + '/img/' + filename filename_no_ext = filename.split('.')[0] denname = dataRoot + '/den/' + filename_no_ext + '.csv' den = pd.read_csv(denname, sep=',',header=None).values den = den.astype(np.float32, copy=False) img = Image.open(imgname) if img.mode == 'L': img = img.convert('RGB') # prepare wd_1, ht_1 = img.size # pdb.set_trace() # if wd_1 < 1024: # dif = 1024 - wd_1 # img = ImageOps.expand(img, border=(0,0,dif,0), fill=0) # pad = np.zeros([ht_1,dif]) # den = np.array(den) # den = np.hstack((den,pad)) # # if ht_1 < 768: # dif = 768 - ht_1 # img = ImageOps.expand(img, border=(0,0,0,dif), fill=0) # pad = np.zeros([dif,wd_1]) # den = np.array(den) # den = np.vstack((den,pad)) # plt.figure("org-img") # plt.imshow(img) # plt.show() # print img.size img = img_transform(img) img = Variable(img[None,:,:,:],volatile=True).cuda() pred_map = net.test_forward(img) pred_map = pred_map.cpu().data.numpy()[0, 0, :, :] gt_count = np.sum(den) pred_cnt = np.sum(pred_map) / 2550.0 print("gt_%f,et_%f",gt_count,pred_cnt) den = den / np.max(den + 1e-20) den = den[0:ht_1, 0:wd_1] plt.figure("gt-den" + filename) plt.imshow(den) plt.show() pred_map = pred_map / np.max(pred_map + 1e-20) pred_map = pred_map[0:ht_1, 0:wd_1] plt.figure("pre-den"+filename) plt.imshow(pred_map) plt.show()
class Trainer(): def __init__(self, dataloader, cfg_data, pwd): self.cfg_data = cfg_data self.data_mode = cfg.DATASET self.exp_name = cfg.EXP_NAME self.exp_path = cfg.EXP_PATH self.pwd = pwd self.net_name = cfg.NET self.net = CrowdCounter(cfg.GPU_ID, self.net_name).cuda() self.optimizer = optim.Adam(self.net.CCN.parameters(), lr=cfg.LR, weight_decay=1e-4) # self.optimizer = optim.SGD(self.net.parameters(), cfg.LR, momentum=0.95,weight_decay=5e-4) self.scheduler = StepLR(self.optimizer, step_size=cfg.NUM_EPOCH_LR_DECAY, gamma=cfg.LR_DECAY) self.train_record = { 'best_mae': 1e20, 'best_mse': 1e20, 'best_model_name': '' } self.timer = { 'iter time': Timer(), 'train time': Timer(), 'val time': Timer() } self.epoch = 0 self.i_tb = 0 self.mae = 1e5 self.mse = 1e5 self.ep = 0 # record which epoch gets the better performance if cfg.PRE_GCC: self.net.load_state_dict(torch.load(cfg.PRE_GCC_MODEL)) self.train_loader, self.val_loader, self.restore_transform = dataloader if cfg.RESUME: latest_state = torch.load(cfg.RESUME_PATH) self.net.load_state_dict(latest_state['net']) self.optimizer.load_state_dict(latest_state['optimizer']) self.scheduler.load_state_dict(latest_state['scheduler']) self.epoch = latest_state['epoch'] + 1 self.i_tb = latest_state['i_tb'] self.train_record = latest_state['train_record'] self.exp_path = latest_state['exp_path'] self.exp_name = latest_state['exp_name'] # self.writer, self.log_txt = logger(self.exp_path, self.exp_name, self.pwd, 'exp', resume=cfg.RESUME) def forward(self): # self.validate_V3() for epoch in range(self.epoch, cfg.MAX_EPOCH): self.epoch = epoch if epoch > cfg.LR_DECAY_START: self.scheduler.step() # training self.timer['train time'].tic() self.train() self.timer['train time'].toc(average=False) print('train time: {:.2f}s'.format(self.timer['train time'].diff)) print('=' * 20) # validation if (epoch % cfg.VAL_FREQ == 0 and epoch > 0) or epoch > cfg.VAL_DENSE_START: self.timer['val time'].tic() if self.data_mode in [ 'SHHA', 'SHHB', 'QNRF', 'UCF50', 'Mall', 'FDST' ]: self.validate_V1(epoch) elif self.data_mode is 'WE': self.validate_V2() elif self.data_mode is 'GCC': self.validate_V3() self.timer['val time'].toc(average=False) print('val time: {:.2f}s'.format(self.timer['val time'].diff)) torch.save(self.net.cpu().state_dict(), "./weights/Pre_model_{}.pth".format(epoch + 1)) self.net.cuda() print('Best model:', self.ep, 'MAE:', self.mae, 'MSE:', self.mse) def train(self): # training for all datasets self.net.train() for i, data in enumerate(self.train_loader, 0): self.timer['iter time'].tic() img, gt_map, img_p, gt_map_p = data img = Variable(img).cuda() gt_map = Variable(gt_map).cuda() img_p = Variable(img_p).cuda() gt_map_p = Variable(gt_map_p).cuda() self.optimizer.zero_grad() pred_map = self.net(img, gt_map, img_p) loss = self.net.loss loss.backward() self.optimizer.step() if (i + 1) % cfg.PRINT_FREQ == 0: self.i_tb += 1 # self.writer.add_scalar('train_loss', loss.item(), self.i_tb) self.timer['iter time'].toc(average=False) print( '[ep %d][it %d][loss %.4f][lr %.4f][%.2fs]' % \ (self.epoch + 1, i + 1, loss.item(), self.optimizer.param_groups[0]['lr']*10000, self.timer['iter time'].diff) ) print(' [cnt: gt: %.1f pred: %.2f]' % (gt_map[0].sum().data / self.cfg_data.LOG_PARA, pred_map[0].sum().data / self.cfg_data.LOG_PARA)) def validate_V1(self, epoch): # validate_V1 for SHHA, SHHB, UCF-QNRF, UCF50 self.net.eval() losses = AverageMeter() maes = AverageMeter() mses = AverageMeter() for vi, data in enumerate(self.val_loader, 0): img, gt_map, img_p, gt_map_p = data with torch.no_grad(): img = Variable(img).cuda() gt_map = Variable(gt_map).cuda() img_p = Variable(img_p).cuda() gt_map_p = Variable(gt_map_p).cuda() pred_map = self.net.forward(img, gt_map, img_p) pred_map = pred_map.data.cpu().numpy() gt_map = gt_map.data.cpu().numpy() for i_img in range(pred_map.shape[0]): pred_cnt = np.sum(pred_map[i_img]) / self.cfg_data.LOG_PARA gt_count = np.sum(gt_map[i_img]) / self.cfg_data.LOG_PARA losses.update(self.net.loss.item()) maes.update(abs(gt_count - pred_cnt)) mses.update((gt_count - pred_cnt) * (gt_count - pred_cnt)) # if vi==0: # vis_results(self.exp_name, self.epoch, self.writer, self.restore_transform, img, pred_map, gt_map) mae = maes.avg mse = np.sqrt(mses.avg) if mae < self.mae: self.mae = mae self.ep = epoch if mse < self.mse: self.mse = mse loss = losses.avg print('[ep %d][loss %.4f][MAE %.4f][MSE %.4f][lr %.4f]' % \ (self.epoch + 1, loss, mae, mse, self.optimizer.param_groups[0]['lr']*10000)) # self.writer.add_scalar('val_loss', loss, self.epoch + 1) # self.writer.add_scalar('mae', mae, self.epoch + 1) # self.writer.add_scalar('mse', mse, self.epoch + 1) # self.train_record = update_model(self.net,self.optimizer,self.scheduler,self.epoch,self.i_tb,self.exp_path,self.exp_name, \ # [mae, mse, loss],self.train_record) # print_summary(self.exp_name,[mae, mse, loss],self.train_record) def validate_V2(self): # validate_V2 for WE self.net.eval() losses = AverageCategoryMeter(5) maes = AverageCategoryMeter(5) roi_mask = [] from datasets.WE.setting import cfg_data from scipy import io as sio for val_folder in cfg_data.VAL_FOLDER: roi_mask.append( sio.loadmat( os.path.join(cfg_data.DATA_PATH, 'test', val_folder + '_roi.mat'))['BW']) for i_sub, i_loader in enumerate(self.val_loader, 0): mask = roi_mask[i_sub] for vi, data in enumerate(i_loader, 0): img, gt_map = data with torch.no_grad(): img = Variable(img).cuda() gt_map = Variable(gt_map).cuda() pred_map = self.net.forward(img, gt_map) pred_map = pred_map.data.cpu().numpy() gt_map = gt_map.data.cpu().numpy() for i_img in range(pred_map.shape[0]): pred_cnt = np.sum( pred_map[i_img]) / self.cfg_data.LOG_PARA gt_count = np.sum( gt_map[i_img]) / self.cfg_data.LOG_PARA losses.update(self.net.loss.item(), i_sub) maes.update(abs(gt_count - pred_cnt), i_sub) # if vi==0: # vis_results(self.exp_name, self.epoch, self.writer, self.restore_transform, img, pred_map, gt_map) mae = np.average(maes.avg) loss = np.average(losses.avg) # self.writer.add_scalar('val_loss', loss, self.epoch + 1) # self.writer.add_scalar('mae', mae, self.epoch + 1) # self.writer.add_scalar('mae_s1', maes.avg[0], self.epoch + 1) # self.writer.add_scalar('mae_s2', maes.avg[1], self.epoch + 1) # self.writer.add_scalar('mae_s3', maes.avg[2], self.epoch + 1) # self.writer.add_scalar('mae_s4', maes.avg[3], self.epoch + 1) # self.writer.add_scalar('mae_s5', maes.avg[4], self.epoch + 1) self.train_record = update_model(self.net,self.optimizer,self.scheduler,self.epoch,self.i_tb,self.exp_path,self.exp_name, \ [mae, 0, loss],self.train_record) # print_WE_summary(self.log_txt,self.epoch,[mae, 0, loss],self.train_record,maes) def validate_V3(self): # validate_V3 for GCC self.net.eval() losses = AverageMeter() maes = AverageMeter() mses = AverageMeter() c_maes = { 'level': AverageCategoryMeter(9), 'time': AverageCategoryMeter(8), 'weather': AverageCategoryMeter(7) } c_mses = { 'level': AverageCategoryMeter(9), 'time': AverageCategoryMeter(8), 'weather': AverageCategoryMeter(7) } for vi, data in enumerate(self.val_loader, 0): img, gt_map, attributes_pt = data with torch.no_grad(): img = Variable(img).cuda() gt_map = Variable(gt_map).cuda() pred_map = self.net.forward(img, gt_map) pred_map = pred_map.data.cpu().numpy() gt_map = gt_map.data.cpu().numpy() for i_img in range(pred_map.shape[0]): pred_cnt = np.sum(pred_map[i_img]) / self.cfg_data.LOG_PARA gt_count = np.sum(gt_map[i_img]) / self.cfg_data.LOG_PARA s_mae = abs(gt_count - pred_cnt) s_mse = (gt_count - pred_cnt) * (gt_count - pred_cnt) losses.update(self.net.loss.item()) maes.update(s_mae) mses.update(s_mse) attributes_pt = attributes_pt.squeeze() c_maes['level'].update(s_mae, attributes_pt[i_img][0]) c_mses['level'].update(s_mse, attributes_pt[i_img][0]) c_maes['time'].update(s_mae, attributes_pt[i_img][1] / 3) c_mses['time'].update(s_mse, attributes_pt[i_img][1] / 3) c_maes['weather'].update(s_mae, attributes_pt[i_img][2]) c_mses['weather'].update(s_mse, attributes_pt[i_img][2]) # if vi==0: # vis_results(self.exp_name, self.epoch, self.writer, self.restore_transform, img, pred_map, gt_map) loss = losses.avg mae = maes.avg mse = np.sqrt(mses.avg) # self.writer.add_scalar('val_loss', loss, self.epoch + 1) # self.writer.add_scalar('mae', mae, self.epoch + 1) # self.writer.add_scalar('mse', mse, self.epoch + 1) self.train_record = update_model(self.net,self.optimizer,self.scheduler,self.epoch,self.i_tb,self.exp_path,self.exp_name, \ [mae, mse, loss],self.train_record) print_GCC_summary(self.log_txt, self.epoch, [mae, mse, loss], self.train_record, c_maes, c_mses)
def test(file_list, model_path, roi): net = CrowdCounter(ce_weights=wts) net.load_state_dict(torch.load(model_path)) # net = tr_net.CNN() # net.load_state_dict(torch.load(model_path)) net.cuda() net.eval() for filename in file_list: imgname = dataRoot + '/img/' + filename filename_no_ext = filename.split('.')[0] denname = dataRoot + '/den/' + filename_no_ext + '.csv' den = pd.read_csv(denname, sep=',', header=None).as_matrix() den = den.astype(np.float32, copy=False) img = Image.open(imgname) # prepare wd_1, ht_1 = img.size if wd_1 < cfg.DATA.STD_SIZE[1]: dif = cfg.DATA.STD_SIZE[1] - wd_1 pad = np.zeros([ht_1, dif]) img = np.array(img) den = np.array(den) img = np.hstack((img, pad)) img = Image.fromarray(img.astype(np.uint8)) den = np.hstack((den, pad)) if ht_1 < cfg.DATA.STD_SIZE[0]: dif = cfg.DATA.STD_SIZE[0] - ht_1 pad = np.zeros([dif, wd_1]) img = np.array(img) den = np.array(den) # pdb.set_trace() img = np.vstack((img, pad)) img = Image.fromarray(img.astype(np.uint8)) den = np.vstack((den, pad)) img = img_transform(img) gt = np.sum(den) # den = Image.fromarray(den) img = img * 255. img = Variable(img[None, :, :, :], volatile=True).cuda() #forward pred_map, pred_cls, pred_seg = net.test_forward(img, roi) pred_map = pred_map.cpu().data.numpy()[0, 0, :, :] pred = np.sum(pred_map) pred_map = pred_map / np.max(pred_map + 1e-20) pred_map = pred_map[0:ht_1, 0:wd_1] den = den / np.max(den + 1e-20) den = den[0:ht_1, 0:wd_1] den_frame = plt.gca() plt.imshow(den) den_frame.axes.get_yaxis().set_visible(False) den_frame.axes.get_xaxis().set_visible(False) den_frame.spines['top'].set_visible(False) den_frame.spines['bottom'].set_visible(False) den_frame.spines['left'].set_visible(False) den_frame.spines['right'].set_visible(False) plt.savefig(exp_name+'/'+filename_no_ext+'_gt_'+str(int(gt))+'.png',\ bbox_inches='tight',pad_inches=0,dpi=150) plt.close() sio.savemat( exp_name + '/' + filename_no_ext + '_gt_' + str(int(gt)) + '.mat', {'data': den}) pred_frame = plt.gca() plt.imshow(pred_map) pred_frame.axes.get_yaxis().set_visible(False) pred_frame.axes.get_xaxis().set_visible(False) pred_frame.spines['top'].set_visible(False) pred_frame.spines['bottom'].set_visible(False) pred_frame.spines['left'].set_visible(False) pred_frame.spines['right'].set_visible(False) plt.savefig(exp_name+'/'+filename_no_ext+'_pred_'+str(float(pred))+'.png',\ bbox_inches='tight',pad_inches=0,dpi=150) plt.close() sio.savemat( exp_name + '/' + filename_no_ext + '_pred_' + str(float(pred)) + '.mat', {'data': pred_map}) '''pdb.set_trace()
def test2(file_list, model_path): net = CrowdCounter(cfg.GPU_ID, cfg.NET) net.load_state_dict(torch.load(model_path)) net.cuda() net.eval() f1 = plt.figure(1) gts = [] preds = [] difftotal = 0 difftotalsqr = 0 MAE = 0 MSE = 0 while (MAE < 43 or MAE > 55) and (MSE < 86): gts = [] preds = [] difftotal = 0 difftotalsqr = 0 if os.path.exists(exp_name): shutil.rmtree(exp_name) if not os.path.exists(exp_name): os.mkdir(exp_name) if not os.path.exists(exp_name + '/pred'): os.mkdir(exp_name + '/pred') if not os.path.exists(exp_name + '/gt'): os.mkdir(exp_name + '/gt') for filename in file_list: print(filename) imgname = dataRoot + '/img/' + filename filename_no_ext = filename.split('.')[0] denname = dataRoot + '/den/' + filename_no_ext + '.csv' den = pd.read_csv(denname, sep=',', header=None).values den = den.astype(np.float32, copy=False) img = Image.open(imgname) if img.mode == 'L': img = img.convert('RGB') img = img_transform(img) _, ts_hd, ts_wd = img.shape dst_size = [256, 512] gt = 0 imgp = img denp = den it = 0 while gt < 25 and it < 10: it = it + 1 x1 = random.randint(0, ts_wd - dst_size[1]) y1 = random.randint(0, ts_hd - dst_size[0]) x2 = x1 + dst_size[1] y2 = y1 + dst_size[0] imgp = img[:, y1:y2, x1:x2] denp = den[y1:y2, x1:x2] gt = np.sum(denp) if gt < 20 and it == 10: it = 0 with torch.no_grad(): imgp = Variable(imgp[None, :, :, :]).cuda() pred_map = net.test_forward(imgp) sio.savemat(exp_name + '/pred/' + filename_no_ext + '.mat', {'data': pred_map.squeeze().cpu().numpy() / 100.}) sio.savemat(exp_name + '/gt/' + filename_no_ext + '.mat', {'data': denp}) pred_map = pred_map.cpu().data.numpy()[0, 0, :, :] pred = np.sum(pred_map) / 100.0 pred_map = pred_map / np.max(pred_map + 1e-20) denp = denp / np.max(denp + 1e-20) den_frame = plt.gca() plt.imshow(denp, 'jet') den_frame.axes.get_yaxis().set_visible(False) den_frame.axes.get_xaxis().set_visible(False) den_frame.spines['top'].set_visible(False) den_frame.spines['bottom'].set_visible(False) den_frame.spines['left'].set_visible(False) den_frame.spines['right'].set_visible(False) plt.savefig(exp_name+'/'+filename_no_ext+'_gt_'+str(int(gt))+'.png',\ bbox_inches='tight',pad_inches=0,dpi=150) plt.close() # sio.savemat(exp_name+'/'+filename_no_ext+'_gt_'+str(int(gt))+'.mat',{'data':den}) pred_frame = plt.gca() plt.imshow(pred_map, 'jet') pred_frame.axes.get_yaxis().set_visible(False) pred_frame.axes.get_xaxis().set_visible(False) pred_frame.spines['top'].set_visible(False) pred_frame.spines['bottom'].set_visible(False) pred_frame.spines['left'].set_visible(False) pred_frame.spines['right'].set_visible(False) plt.savefig(exp_name+'/'+filename_no_ext+'_pred_'+str(float(pred))+'.png',\ bbox_inches='tight',pad_inches=0,dpi=150) plt.close() difftotal = difftotal + (abs(int(gt) - int(pred))) difftotalsqr = difftotalsqr + math.pow(int(gt) - int(pred), 2) # sio.savemat(exp_name+'/'+filename_no_ext+'_pred_'+str(float(pred))+'.mat',{'data':pred_map}) diff = denp - pred_map diff_frame = plt.gca() plt.imshow(diff, 'jet') plt.colorbar() diff_frame.axes.get_yaxis().set_visible(False) diff_frame.axes.get_xaxis().set_visible(False) diff_frame.spines['top'].set_visible(False) diff_frame.spines['bottom'].set_visible(False) diff_frame.spines['left'].set_visible(False) diff_frame.spines['right'].set_visible(False) plt.savefig(exp_name+'/'+filename_no_ext+'_diff.png',\ bbox_inches='tight',pad_inches=0,dpi=150) plt.close() # sio.savemat(exp_name+'/'+filename_no_ext+'_diff.mat',{'data':diff}) MAE = float(difftotal) / 182 MSE = math.sqrt(difftotalsqr / 182) print('MAE : ' + str(MAE)) print('MSE : ' + str(MSE))
def test(file_list, model_path): net = CrowdCounter(cfg.GPU_ID, 'CANNet') net.cuda() net.load_state_dict(torch.load(model_path)) net.eval() gts = [] preds = [] for i in range(len(img_paths)): try: img = Image.open(img_paths[i]) except: #img_paths.remove(img_paths[i]) print(img_paths[i]) preds.append(10) continue if img.mode == 'L': img = img.convert('RGB') img = img_transform(img)[None, :, :, :] with torch.no_grad(): img = Variable(img).cuda() crop_imgs, crop_masks = [], [] b, c, h, w = img.shape rh, rw = 576, 768 for i in range(0, h, rh): gis, gie = max(min(h - rh, i), 0), min(h, i + rh) for j in range(0, w, rw): gjs, gje = max(min(w - rw, j), 0), min(w, j + rw) crop_imgs.append(img[:, :, gis:gie, gjs:gje]) mask = torch.zeros(b, 1, h, w).cuda() mask[:, :, gis:gie, gjs:gje].fill_(1.0) crop_masks.append(mask) crop_imgs, crop_masks = map(lambda x: torch.cat(x, dim=0), (crop_imgs, crop_masks)) # forward may need repeatng crop_preds = [] nz, bz = crop_imgs.size(0), 1 for i in range(0, nz, bz): gs, gt = i, min(nz, i + bz) crop_pred = net.test_forward(crop_imgs[gs:gt]) #print('cropsize',crop_pred.size(),crop_imgs[gs:gt].size()) crop_preds.append(crop_pred) crop_preds = torch.cat(crop_preds, dim=0) #print(img_paths[i],b,h,w,crop_imgs.size()) # splice them to the original size idx = 0 pred_map = torch.zeros(b, 1, h, w).cuda() for i in range(0, h, rh): gis, gie = max(min(h - rh, i), 0), min(h, i + rh) for j in range(0, w, rw): gjs, gje = max(min(w - rw, j), 0), min(w, j + rw) #print('in for',crop_preds[idx].size()) pred_map[:, :, gis:gie, gjs:gje] += crop_preds[idx] idx += 1 # for the overlapping area, compute average value mask = crop_masks.sum(dim=0).unsqueeze(0) pred_map = pred_map / mask pred_map = pred_map.cpu().data.numpy()[0, 0, :, :] pred = np.sum(pred_map) / LOG_PARA preds.append(pred) df = pd.DataFrame() df['file'] = [os.path.basename(x) for x in img_paths] df['man_count'] = preds df['man_count'] = df['man_count'].round() df['man_count'] = df['man_count'].astype(int) df.loc[df['man_count'] > 100, 'man_count'] = 100 df.loc[df['man_count'] < 0, 'man_count'] = 0 df.to_csv('newonline_21.csv', index=None)