Esempio n. 1
0
    def test_time_as_feature_equals_true(self):
        torch.manual_seed(0)
        batchsize = 2
        ts_dim = 1
        sequencelength = 5
        model = ConvShapeletModel(n_shapelets_per_size={
            10: 50,
            20: 50
        },
                                  ts_dim=ts_dim,
                                  n_classes=2,
                                  use_time_as_feature=True)
        x = torch.zeros([batchsize, ts_dim, sequencelength])
        if torch.cuda.is_available():
            x = x.cuda()
            model = model.cuda()

        logits, deltas, pts, budget = model._logits(x=x)

        logits_sum_reference = np.array(-1.0345266, dtype=np.float32)
        self.assertAlmostEqual(logits.sum().cpu().detach().numpy(),
                               logits_sum_reference,
                               places=4)

        pts_sum_reference = np.array(2., dtype=np.float32)
        self.assertAlmostEqual(pts.sum().cpu().detach().numpy(),
                               pts_sum_reference,
                               places=4)
Esempio n. 2
0
    def test_Trainer_Conv1D_TwoPatterns(self):
        cleanup()

        try:
            traindataset = UCRDataset("TwoPatterns",
                                      partition="train",
                                      ratio=.75,
                                      randomstate=0,
                                      augment_data_noise=.1)
            validdataset = UCRDataset("TwoPatterns",
                                      partition="valid",
                                      ratio=.75,
                                      randomstate=0)
            nclasses = traindataset.nclasses
            traindataloader = torch.utils.data.DataLoader(traindataset,
                                                          batch_size=8,
                                                          shuffle=True,
                                                          num_workers=0,
                                                          pin_memory=True)

            validdataloader = torch.utils.data.DataLoader(validdataset,
                                                          batch_size=8,
                                                          shuffle=False,
                                                          num_workers=0,
                                                          pin_memory=True)

            model = ConvShapeletModel(num_layers=3,
                                      hidden_dims=50,
                                      ts_dim=1,
                                      n_classes=nclasses)

            if torch.cuda.is_available():
                model = model.cuda()

            config = dict(epochs=2,
                          learning_rate=1e-3,
                          earliness_factor=.75,
                          visdomenv="unittest",
                          switch_epoch=1,
                          loss_mode="loss_cross_entropy",
                          show_n_samples=0,
                          store="/tmp")

            trainer = Trainer(model, traindataloader, validdataloader,
                              **config)
            trainer.fit()

        except Exception as e:
            self.fail(logging.exception(e))

        self.assertEqual(trainer.get_phase(), EARLINESS_PHASE_NAME)

        # should have written two model files
        self.assertTrue(
            os.path.exists(
                "/tmp/model_{}.pth".format(CLASSIFICATION_PHASE_NAME)))
        self.assertTrue(
            os.path.exists("/tmp/model_{}.pth".format(EARLINESS_PHASE_NAME)))
Esempio n. 3
0
    def test_save_load(self):

        model = ConvShapeletModel()
        try:
            model.save("/tmp/model.pth",
                       testarg=1,
                       secondtestarg=dict(a=1, b="c"))
            snapshot = model.load("/tmp/model.pth")
        except Exception as e:
            self.fail(logging.error(e))

        # test if custom kwargs are saved and loaded as intended...
        self.assertEqual(snapshot["testarg"], 1)
        self.assertEqual(snapshot["secondtestarg"]["a"], 1)
        self.assertEqual(snapshot["secondtestarg"]["b"], "c")
Esempio n. 4
0
    def _setup(self, config):

        traindataset = UCRDataset(config["dataset"],
                                  partition="train",
                                  ratio=.8,
                                  randomstate=config["fold"],
                                  silent=True,
                                  augment_data_noise=0)

        validdataset = UCRDataset(config["dataset"],
                                  partition="valid",
                                  ratio=.8,
                                  randomstate=config["fold"],
                                  silent=True)

        self.epochs = config["epochs"]

        nclasses = traindataset.nclasses

        # handles multitxhreaded batching andconfig shuffling
        self.traindataloader = torch.utils.data.DataLoader(
            traindataset,
            batch_size=config["batchsize"],
            shuffle=True,
            num_workers=config["workers"],
            pin_memory=False)
        self.validdataloader = torch.utils.data.DataLoader(
            validdataset,
            batch_size=config["batchsize"],
            shuffle=False,
            num_workers=config["workers"],
            pin_memory=False)

        self.model = ConvShapeletModel(
            num_layers=config["num_layers"],
            hidden_dims=config["hidden_dims"],
            ts_dim=1,
            n_classes=nclasses,
            use_time_as_feature=True,
            drop_probability=config["drop_probability"],
            scaleshapeletsize=False,
            shapelet_width_increment=config["shapelet_width_increment"])

        if torch.cuda.is_available():
            self.model = self.model.cuda()

        self.trainer = Trainer(self.model, self.traindataloader,
                               self.validdataloader, **config)
Esempio n. 5
0
def getModel(args):
    # Get Model
    if args.model == "DualOutputRNN":
        model = DualOutputRNN(input_dim=args.input_dims,
                              nclasses=args.nclasses,
                              hidden_dims=args.hidden_dims,
                              num_rnn_layers=args.num_layers,
                              dropout=args.dropout,
                              init_late=True)

    elif args.model == "WaveNet":

        model = WaveNetModel(layers=5,
                             blocks=4,
                             dilation_channels=32,
                             residual_channels=32,
                             skip_channels=256,
                             end_channels=args.nclasses,
                             classes=args.nclasses,
                             output_length=1,
                             kernel_size=2,
                             dtype=torch.FloatTensor,
                             input_dims=args.input_dims,
                             bias=False)

    elif args.model == "Conv1D":
        model = ConvShapeletModel(
            num_layers=args.num_layers,
            hidden_dims=args.hidden_dims,
            ts_dim=args.input_dims,
            n_classes=args.nclasses,
            use_time_as_feature=False,
            seqlength=args.seqlength,
            scaleshapeletsize=args.shapelet_width_in_percent,
            drop_probability=args.dropout,
            shapelet_width_increment=args.shapelet_width_increment)
    else:
        raise ValueError(
            "Invalid Model, Please insert either 'DualOutputRNN', or 'Conv1D'")

    if torch.cuda.is_available():
        model = model.cuda()

    return model
Esempio n. 6
0
def prepare_model_and_optimizer(args, input_dims, sequence_length,
                                num_classes):

    if args.model == "DualOutputRNN":
        hparams = pd.read_csv(config.DUALOUTPUTRNN_HYPERPARAMETER_CSV,
                              index_col=0)

        if args.dataset not in hparams.index:
            raise ValueError(
                f"No dataset {args.dataset} found in {config.DUALOUTPUTRNN_HYPERPARAMETER_CSV}"
            )

        hparam = hparams.loc[args.dataset]
        model = DualOutputRNN(input_dim=int(input_dims),
                              nclasses=num_classes,
                              hidden_dims=int(hparam.hidden_dims),
                              num_rnn_layers=int(hparam.num_layers),
                              dropout=hparam.dropout,
                              init_late=True)

        optimizer = torch.optim.Adam(model.parameters(),
                                     lr=hparam.learning_rate,
                                     weight_decay=hparam.weight_decay)
        #optimizer = ScheduledOptim(optimizer, d_model=model.d_model, n_warmup_steps=500)

        return model, optimizer

    elif args.model == "WaveNet":

        model = WaveNetModel(layers=5,
                             blocks=4,
                             dilation_channels=32,
                             residual_channels=32,
                             skip_channels=256,
                             end_channels=args.nclasses,
                             classes=args.nclasses,
                             output_length=1,
                             kernel_size=2,
                             dtype=torch.FloatTensor,
                             input_dims=args.input_dims,
                             bias=False)

    elif args.model == "Conv1D":
        hparams = pd.read_csv(config.CONV1D_HYPERPARAMETER_CSV, index_col=0)

        if args.dataset not in hparams.index:
            raise ValueError(
                f"No dataset {args.dataset} found in {config.CONV1D_HYPERPARAMETER_CSV}"
            )

        hparam = hparams.loc[args.dataset]

        model = ConvShapeletModel(num_layers=int(hparam.num_layers),
                                  hidden_dims=int(hparam.hidden_dims),
                                  ts_dim=int(input_dims),
                                  n_classes=int(num_classes),
                                  drop_probability=hparam.dropout,
                                  scaleshapeletsize=False,
                                  seqlength=int(sequence_length),
                                  shapelet_width_increment=int(
                                      hparam.shapelet_width_increment))

        optimizer = torch.optim.Adam(model.parameters(),
                                     lr=hparam.learning_rate,
                                     weight_decay=hparam.weight_decay)

        return model, optimizer

    else:
        raise ValueError(
            "Invalid Model, Please insert either 'DualOutputRNN', or 'Conv1D'")
Esempio n. 7
0
 def test_defaults_constructor_arguments(self):
     try:
         ConvShapeletModel()
     except Exception as e:
         self.fail(logging.error(e))