# Copying config file for book keeping copy2(args.config, model_dir) with open(model_dir+'args.json', 'w') as f: json.dump(vars(args), f) # converting args.namespace to dict float_tensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor torch.manual_seed(exp_config['seed']) if use_cuda: torch.cuda.manual_seed_all(exp_config['seed']) # Init Model model = Ensemble(**ensemble_args) # TODO Checkpoint loading if use_cuda: model.cuda() model = DataParallel(model) print(model) if args.resnet: cnn = ResNet() if use_cuda: cnn.cuda() cnn = DataParallel(cnn) softmax = nn.Softmax(dim=-1) # Loss Function and Optimizer guesser_loss_function = nn.CrossEntropyLoss() #For Guesser
def main(): net = Ensemble(device_id, pretrained=False) print ('load snapshot \'%s\' for testing' % args['snapshot']) # net.load_state_dict(torch.load('pretrained/R2Net.pth', map_location='cuda:2')) # net = load_part_of_model2(net, 'pretrained/R2Net.pth', device_id=2) net.load_state_dict(torch.load(os.path.join(ckpt_path, exp_name, args['snapshot'] + '.pth'), map_location='cuda:' + str(device_id))) net.eval() net.cuda() results = {} with torch.no_grad(): for name, root in to_test.items(): precision_record, recall_record, = [AvgMeter() for _ in range(256)], [AvgMeter() for _ in range(256)] mae_record = AvgMeter() if args['save_results']: check_mkdir(os.path.join(ckpt_path, exp_name, '(%s) %s_%s' % (exp_name, name, args['snapshot']))) img_list = [i_id.strip() for i_id in open(imgs_path)] for idx, img_name in enumerate(img_list): print('predicting for %s: %d / %d' % (name, idx + 1, len(img_list))) print(img_name) if name == 'VOS' or name == 'DAVSOD': img = Image.open(os.path.join(root, img_name + '.png')).convert('RGB') else: img = Image.open(os.path.join(root, img_name + '.jpg')).convert('RGB') shape = img.size img = img.resize(args['input_size']) img_var = Variable(img_transform(img).unsqueeze(0), volatile=True).cuda() start = time.time() outputs_a, outputs_c = net(img_var) a_out1u, a_out2u, a_out2r, a_out3r, a_out4r, a_out5r = outputs_a # F3Net # b_outputs0, b_outputs1 = outputs_b # CPD c_outputs0, c_outputs1, c_outputs2, c_outputs3, c_outputs4 = outputs_c # RAS prediction = torch.sigmoid(c_outputs0) end = time.time() print('running time:', (end - start)) # e = Erosion2d(1, 1, 5, soft_max=False).cuda() # prediction2 = e(prediction) # # precision2 = to_pil(prediction2.data.squeeze(0).cpu()) # precision2 = prediction2.data.squeeze(0).cpu().numpy() # precision2 = precision2.resize(shape) # prediction2 = np.array(precision2) # prediction2 = prediction2.astype('float') precision = to_pil(prediction.data.squeeze(0).cpu()) precision = precision.resize(shape) prediction = np.array(precision) prediction = prediction.astype('float') # plt.style.use('classic') # plt.subplot(1, 2, 1) # plt.imshow(prediction) # plt.subplot(1, 2, 2) # plt.imshow(precision2[0]) # plt.show() prediction = MaxMinNormalization(prediction, prediction.max(), prediction.min()) * 255.0 prediction = prediction.astype('uint8') # if args['crf_refine']: # prediction = crf_refine(np.array(img), prediction) gt = np.array(Image.open(os.path.join(gt_root, img_name + '.png')).convert('L')) precision, recall, mae = cal_precision_recall_mae(prediction, gt) for pidx, pdata in enumerate(zip(precision, recall)): p, r = pdata precision_record[pidx].update(p) recall_record[pidx].update(r) mae_record.update(mae) if args['save_results']: folder, sub_name = os.path.split(img_name) save_path = os.path.join(ckpt_path, exp_name, '(%s) %s_%s' % (exp_name, name, args['snapshot']), folder) if not os.path.exists(save_path): os.makedirs(save_path) Image.fromarray(prediction).save(os.path.join(save_path, sub_name + '.png')) fmeasure = cal_fmeasure([precord.avg for precord in precision_record], [rrecord.avg for rrecord in recall_record]) results[name] = {'fmeasure': fmeasure, 'mae': mae_record.avg} print ('test results:') print (results) log_path = os.path.join('result_all.txt') open(log_path, 'a').write(exp_name + ' ' + args['snapshot'] + '\n') open(log_path, 'a').write(str(results) + '\n\n')