Esempio n. 1
0
class FL_client():
    def __init__(self, args):
        if args.dataset == 'cifar':
            self.net = CNNCifar(args=args).to(args.device)
        else:
            self.net = CNNMnist(args=args).to(args.device)
        self.net.train()
        self.loss_func = nn.CrossEntropyLoss()
        self.optimizer = torch.optim.SGD(self.net.parameters(), lr=args.lr)
        self.args = args
        self.w_glob = []
        # key exchange
        self.x = self.gx = 0
        self.keys = defaultdict(int)

    def set_data(self, dataset, idxs):
        self.data = DataLoader(DatasetSplit(dataset, idxs),
                               batch_size=self.args.local_bs,
                               shuffle=True)

    def load_state(self, state_dict):
        self.net.load_state_dict(state_dict)

    def train(self):
        epoch_loss = []
        for _ in range(self.args.local_ep):
            batch_loss = []
            for _, (images, labels) in enumerate(self.data):
                images, labels = images.to(self.args.device), labels.to(
                    self.args.device)
                pred = self.net(images)
                loss = self.loss_func(pred, labels)
                self.optimizer.zero_grad()
                loss.backward()
                self.optimizer.step()
                batch_loss.append(loss.item())
            epoch_loss.append(sum(batch_loss) / len(batch_loss))
        return self.net.state_dict(), sum(epoch_loss) / len(epoch_loss)
Esempio n. 2
0
def main_worker(gpu, ngpus_per_node, args):
    print("gpu:", gpu)
    args.gpu = gpu
    if args.rank == 0:  #(第一台服务器只有三台GPU,需要特殊处理)
        newrank = args.rank * ngpus_per_node + gpu
    else:
        newrank = args.rank * ngpus_per_node + gpu - 1
    #初始化,使用tcp方式进行通信
    print("begin init")
    dist.init_process_group(init_method=args.init_method,
                            backend="nccl",
                            world_size=args.world_size,
                            rank=newrank)
    print("end init")

    #建立通信group,rank=0作为server,用broadcast模拟send和rec,需要server和每个client建立group
    group = []
    for i in range(1, args.world_size):
        group.append(dist.new_group([0, i]))
    allgroup = dist.new_group([i for i in range(args.world_size)])

    if newrank == 0:
        """ server"""

        print("使用{}号服务器的第{}块GPU作为server".format(args.rank, gpu))

        #在模型训练期间,server只负责整合参数并分发,不参与任何计算
        #设置cpu
        args.device = torch.device(
            'cuda:{}'.format(args.gpu)
            if torch.cuda.is_available() and args.gpu != -1 else 'cpu')

        net = CNNMnist().to(args.device)
        w_avg = copy.deepcopy(net.state_dict())
        for j in range(args.epochs):
            if j == args.epochs - 1:
                for i in w_avg.keys():
                    temp = w_avg[i].to(args.device)
                    w_avg[i] = average_gradients(temp, group, allgroup)
            else:
                for i in w_avg.keys():
                    temp = w_avg[i].to(args.device)
                    average_gradients(temp, group, allgroup)
        torch.save(w_avg, 'w_wag')
        net.load_state_dict(w_avg)
        #加载测试数据
        trans_mnist = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307, ), (0.3081, ))
        ])
        dataset_test = datasets.MNIST('data/',
                                      train=False,
                                      download=True,
                                      transform=trans_mnist)
        test_set = torch.utils.data.DataLoader(dataset_test,
                                               batch_size=args.bs)
        test_accuracy, test_loss = test(net, test_set, args)
        print("Testing accuracy: {:.2f}".format(test_accuracy))
        print("Testing loss: {:.2f}".format(test_loss))

    else:
        """clents"""

        print("使用{}号服务器的第{}块GPU作为第{}个client".format(args.rank, gpu, newrank))

        #设置gpu
        args.device = torch.device(
            'cuda:{}'.format(args.gpu)
            if torch.cuda.is_available() and args.gpu != -1 else 'cpu')

        print("begin train...")
        net = CNNMnist().to(args.device)
        print(net)
        data = torch.load("data/distributed/data_of_client{}".format(newrank))
        bsz = 64
        train_set = torch.utils.data.DataLoader(data, batch_size=bsz)

        optimizer = torch.optim.SGD(net.parameters(), lr=args.lr, momentum=0.5)
        num_batches = ceil(len(train_set.dataset) / float(bsz))
        start = time.time()
        for epoch in range(args.epochs):
            for iter in range(3):
                epoch_loss = 0.0
                for data, target in train_set:
                    data, target = data.to(args.device), target.to(args.device)
                    data, target = Variable(data), Variable(target)
                    optimizer.zero_grad()
                    output = net(data)
                    loss = F.nll_loss(output, target)
                    epoch_loss += loss.item()
                    loss.backward()
                    optimizer.step()
                if iter == 3 - 1:
                    print('Rank ', dist.get_rank(), ', epoch ', epoch, ': ',
                          epoch_loss / num_batches)
            """federated learning"""
            w_avg = copy.deepcopy(net.state_dict())

            for k in w_avg.keys():
                print("k:", k)
                temp = average_gradients(w_avg[k].to(args.device), group,
                                         allgroup)
                w_avg[k] = temp
            net.load_state_dict(w_avg)

        end = time.time()
        print(" training time:{}".format((end - start)))

        train_accuracy, train_loss = test(net, train_set, args)
        print("Training accuracy: {:.2f}".format(train_accuracy))
        print("Training loss: {:.2f}".format(train_loss))
Esempio n. 3
0

args = args_parser()
args.gpu = -1
args.device = torch.device('cuda:{}'.format(
    args.gpu) if torch.cuda.is_available() and args.gpu != -1 else 'cpu')
#trans_fmnist = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
#dataset_train = datasets.FashionMNIST('../data/fmnist', train=True, download=True, transform=trans_fmnist)
#dict_users, dict_labels_counter = mnist_noniid(dataset_train, args.num_users)
net_glob = CNNMnist(args=args).to(args.device)
#print(net_glob)

m = net_glob
m.train()

for p1, p2 in zip(m.parameters(), net_glob.parameters()):
    if p1.data.ne(p2.data).sum() > 0:
        print(False)
print(True)

#local_mainFL = LocalUpdate(args=args, dataset=dataset_train, idxs=dict_users[5])
#w_mainFL, loss_mainFL=local_mainFL.train(net=copy.deepcopy(net_glob_mainFL).to(args.device))
#compare_models(net_glob, w_mainFL)


def pnorm(model, p):
    #	for layer in model.keys():
    total_norm = 0
    #	norm_weights = OrderedDict()
    norm_weights = []
    with torch.no_grad():
Esempio n. 4
0
def main_worker(gpu, ngpus_per_node, args):

    print("gpu:", gpu)
    args.gpu = gpu
    if args.rank == 0:  # (第一台服务器只有三台GPU,需要特殊处理)
        newrank = args.rank * ngpus_per_node + gpu
    else:
        newrank = args.rank * ngpus_per_node + gpu-1
    # 初始化,使用tcp方式进行通信
    dist.init_process_group(init_method=args.init_method, backend="nccl", world_size=args.world_size, rank=newrank)

    # 建立通信group,rank=0作为server,用broadcast模拟send和rec,需要server和每个client建立group
    group = []
    for i in range(1, args.world_size):
        group.append(dist.new_group([0, i]))
    allgroup = dist.new_group([i for i in range(args.world_size)])

    if newrank == 0:
        """ server"""

        print("{}号服务器的第{}块GPU作为server".format(args.rank, gpu))

        # 在模型训练期间,server只负责整合参数并分发,不参与任何计算
        # 设置cpu
        args.device = torch.device(
            'cuda:{}'.format(args.gpu) if torch.cuda.is_available() and args.gpu != -1 else 'cpu')

        # 加载测试数据
        trans_mnist = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
        dataset_test = datasets.MNIST('data/', train=False, download=True, transform=trans_mnist)
        test_set = torch.utils.data.DataLoader(dataset_test, batch_size=args.bs)

        """calculate influence function"""
        model = CNNMnist().to(args.device)
        model.load_state_dict(torch.load('w_wag'))

        test_id = 0  # 选择的test数据id
        data, target = test_set.dataset[test_id]
        data = test_set.collate_fn([data])
        target = test_set.collate_fn([target])

        print("begin grad")
        grad_test = grad_z(data, target, model, gpu, create_graph=False)  # grad_test
        print("end grad")
        v = grad_test


        """server与client交互计算s_test(采用rka算法)"""
        #计算模型总参数
        num_parameters=0
        for i in list(model.parameters()):
            # 首先求出每个tensor中所含参数的个数
            temp = 1
            for j in i.size():
                temp *= j
            num_parameters+=temp
        # 向client发送grad_test
        for i in range(args.world_size - 1):
            print("send grad_test to client:", i+1)
            for j in v:
                temp = j
                dist.broadcast(src=0, tensor=temp, group=group[i])

        for k in range(args.num_sample_rka):

            #向client发送采样id
            id=torch.tensor(random.randint(0,num_parameters-1)).to(args.device)
            for i in range(args.world_size-1):
                dist.broadcast(src=0,tensor=id,group=group[i])

            # 从server接收二阶导
            sec_grad = []
            second_grad = [torch.zeros(list(model.parameters())[i].size()).to(args.device) for i in
                           range(len(list(model.parameters())))]
            for i in range(args.world_size - 1):
                temp = copy.deepcopy(second_grad)
                for j in temp:
                    dist.broadcast(src=i + 1, tensor=j, group=group[i])
                sec_grad.append(temp)

            # 整合二阶导,然后分发给client
            e_second_grad = sec_grad[0]
            for i in range(1, args.world_size - 1):
                e_second_grad = [i + j for i, j in six.moves.zip(e_second_grad, sec_grad[i])]
            e_second_grad = [i / (args.world_size - 1) for i in e_second_grad]
            for j in e_second_grad:
                temp = j
                dist.broadcast(src=0, tensor=temp, group=allgroup)
        """交互结束"""

        # 从client接收influence
        print("rec influence")
        allinfluence = []
        influence = torch.tensor([i for i in range(4285)], dtype=torch.float32)
        influence = influence.to(args.device)

        for i in range(args.world_size - 1):
            dist.broadcast(src=i + 1, tensor=influence, group=group[i])
            temp = copy.deepcopy(influence)
            allinfluence.append(temp)
        torch.save(allinfluence, 'influence/influence')


    else:
        """clents"""

        print("{}号服务器的第{}号GPU作为第{}个client".format(args.rank, gpu, newrank))

        # 设置gpu
        args.device = torch.device(
            'cuda:{}'.format(args.gpu) if torch.cuda.is_available() and args.gpu != -1 else 'cpu')
        # 加载训练数据
        data = torch.load("data/distributedData/data_of_client{}".format(newrank))
        bsz = 64
        train_set = torch.utils.data.DataLoader(data, batch_size=bsz)
        model = CNNMnist().to(args.device)
        model.load_state_dict(torch.load('w_wag'))  # 加载模型
        data, target = train_set.dataset[0]
        data = train_set.collate_fn([data])
        target = train_set.collate_fn([target])
        grad_v = grad_z(data, target, model, gpu=gpu,create_graph=False)
        grad_test = copy.deepcopy(grad_v)

        """calculate influence function"""

        """ 和server交互计算s_test,可以循环迭代(采用rka算法)"""

        # 从server接收grad_test
        for i in grad_test:
            dist.broadcast(src=0, tensor=i, group=group[newrank - 1])

        stest = copy.deepcopy(grad_test)
        for k in range(args.num_sample_rka):
            #从server接收采样id,计算二阶导
            id=torch.tensor([0]).to(args.device).to(args.device)
            dist.broadcast(src=0,tensor=id,group=group[newrank - 1])
            idt= id.item()
            second_grad=hessian(model,train_set,idt,gpu=args.gpu)

            #向server发送二阶导
            for i in second_grad:
                temp = i
                dist.broadcast(src=newrank, tensor=temp, group=group[newrank - 1])

            # 从server接收最终的二阶导
            for i in second_grad:
                temp = i
                dist.broadcast(src=0, tensor=temp, group=allgroup)
            # 使用rka算法计算stest
            stest = rka(stest, second_grad, grad_test)

            s_test_fin = stest
            """"s_test计算结束,得到最终的s_test_fin,开始计算influence"""

        print("client:", newrank, "calculate influence")
        n = len(train_set.dataset)
        influence = np.array([i for i in range(n)], dtype='float32')
        for i in utility.create_progressbar(len(train_set.dataset), desc='influence', start=0):
            # 计算grad
            data, target = train_set.dataset[i]
            data = train_set.collate_fn([data])
            target = train_set.collate_fn([target])
            grad_z_vec = grad_z(data, target, model, gpu=gpu)
            # 计算influence
            inf_tmp = -sum(
                [torch.sum(k * j).data.cpu().numpy() for k, j in six.moves.zip(grad_z_vec, s_test_fin)]) / n
            influence[i] = inf_tmp
        influence = torch.tensor(influence).to(args.device)
        # 向服务器发送influence
        print("client:", newrank, "send influence to server")
        dist.broadcast(src=newrank, tensor=influence, group=group[newrank - 1])
        print("client:", newrank, "end send influence to server")