def predict_heinsfeld_autoencoder(): trn_x, trn_y = read_data('rois_cc200') tst_x, tst_y = read_data('rois_cc200', training=False) clf = Autoencoder(num_classes=2, dropout=(0.6, 0.8), learning_rate=(0.0001, 0.0001, 0.0005), momentum=0.9, noise=(0.2, 0.3), batch_size=(100, 10, 10), num_epochs=(700, 2000, 100)) clf.predict(trn_x, trn_y, tst_x, tst_y)
class Agent(agents.random.RandomAgent(epochs)): def __init__(self, *args): super().__init__(*args) self.model = Autoencoder(encoder=self.encode, shape=self.shape, beta=1.) def act(self, seqs): return list( zip(*sorted(zip(self.model.predict(seqs), seqs)) [-self.batch:]))[1] def observe(self, data): super().observe(data) self.model.fit(*zip(*self.seen.items()), epochs=epochs)