Esempio n. 1
0
 def __init__(self,
              inplanes,
              planes,
              stride=1,
              downsample=None,
              norm_type=None):
     super(BasicBlock, self).__init__()
     self.conv1 = conv3x3(inplanes, planes, stride)
     self.bn1 = ModuleHelper.BatchNorm2d(norm_type=norm_type)(planes)
     self.relu = nn.ReLU(inplace=True)
     self.conv2 = conv3x3(planes, planes)
     self.bn2 = ModuleHelper.BatchNorm2d(norm_type=norm_type)(planes)
     self.downsample = downsample
     self.stride = stride
Esempio n. 2
0
    def _make_layer(self, block, planes, blocks, stride=1, norm_type=None):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes,
                          planes * block.expansion,
                          kernel_size=1,
                          stride=stride,
                          bias=False),
                ModuleHelper.BatchNorm2d(norm_type=norm_type)(planes *
                                                              block.expansion),
            )

        layers = []
        layers.append(
            block(self.inplanes,
                  planes,
                  stride,
                  downsample,
                  norm_type=norm_type))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, norm_type=norm_type))

        return nn.Sequential(*layers)
Esempio n. 3
0
 def __init__(self,
              inplanes,
              planes,
              stride=1,
              downsample=None,
              norm_type=None):
     super(Bottleneck, self).__init__()
     self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
     self.bn1 = ModuleHelper.BatchNorm2d(norm_type=norm_type)(planes)
     self.conv2 = nn.Conv2d(planes,
                            planes,
                            kernel_size=3,
                            stride=stride,
                            padding=1,
                            bias=False)
     self.bn2 = ModuleHelper.BatchNorm2d(norm_type=norm_type)(planes)
     self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
     self.bn3 = ModuleHelper.BatchNorm2d(norm_type=norm_type)(planes * 4)
     self.relu = nn.ReLU(inplace=True)
     self.downsample = downsample
     self.stride = stride
Esempio n. 4
0
    def __init__(self,
                 block,
                 layers,
                 num_classes=1000,
                 deep_base=False,
                 norm_type=None):
        super(ResNet, self).__init__()
        self.inplanes = 128 if deep_base else 64
        if deep_base:
            self.prefix = nn.Sequential(
                OrderedDict([
                    ('conv1',
                     nn.Conv2d(3,
                               64,
                               kernel_size=3,
                               stride=2,
                               padding=1,
                               bias=False)),
                    ('bn1', ModuleHelper.BatchNorm2d(norm_type=norm_type)(64)),
                    ('relu1', nn.ReLU(inplace=False)),
                    ('conv2',
                     nn.Conv2d(64,
                               64,
                               kernel_size=3,
                               stride=1,
                               padding=1,
                               bias=False)),
                    ('bn2', ModuleHelper.BatchNorm2d(norm_type=norm_type)(64)),
                    ('relu2', nn.ReLU(inplace=False)),
                    ('conv3',
                     nn.Conv2d(64,
                               128,
                               kernel_size=3,
                               stride=1,
                               padding=1,
                               bias=False)),
                    ('bn3', ModuleHelper.BatchNorm2d(norm_type=norm_type)(
                        self.inplanes)), ('relu3', nn.ReLU(inplace=False))
                ]))
        else:
            self.prefix = nn.Sequential(
                OrderedDict([('conv1',
                              nn.Conv2d(3,
                                        64,
                                        kernel_size=7,
                                        stride=2,
                                        padding=3,
                                        bias=False)),
                             ('bn1',
                              ModuleHelper.BatchNorm2d(norm_type=norm_type)(
                                  self.inplanes)),
                             ('relu', nn.ReLU(inplace=False))]))

        self.maxpool = nn.MaxPool2d(kernel_size=3,
                                    stride=2,
                                    padding=1,
                                    ceil_mode=False)  # change.

        self.layer1 = self._make_layer(block,
                                       64,
                                       layers[0],
                                       norm_type=norm_type)
        self.layer2 = self._make_layer(block,
                                       128,
                                       layers[1],
                                       stride=2,
                                       norm_type=norm_type)
        self.layer3 = self._make_layer(block,
                                       256,
                                       layers[2],
                                       stride=2,
                                       norm_type=norm_type)
        self.layer4 = self._make_layer(block,
                                       512,
                                       layers[3],
                                       stride=2,
                                       norm_type=norm_type)
        self.avgpool = nn.AvgPool2d(7, stride=1)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(
                    m,
                    ModuleHelper.BatchNorm2d(norm_type=norm_type,
                                             ret_cls=True)):
                m.weight.data.fill_(1)
                m.bias.data.zero_()