Esempio n. 1
0
def occlusion(label, xyz):
    if xyz.shape[0] == 0:
        return 0
    normals, lower, upper = dataset.box3d_to_normals(label)
    projected = np.matmul(xyz, np.transpose(normals))
    x_cover_rate = (np.max(projected[:, 0])-np.min(projected[:, 0]))\
        /(upper[0] - lower[0])
    y_cover_rate = (np.max(projected[:, 1])-np.min(projected[:, 1]))\
        /(upper[1] - lower[1])
    z_cover_rate = (np.max(projected[:, 2])-np.min(projected[:, 2]))\
        /(upper[2] - lower[2])
    return x_cover_rate * y_cover_rate * z_cover_rate


# setup model =================================================================
BOX_ENCODING_LEN = get_encoding_len(config['box_encoding_method'])
box_encoding_fn = get_box_encoding_fn(config['box_encoding_method'])
box_decoding_fn = get_box_decoding_fn(config['box_encoding_method'])
if config['input_features'] == 'irgb':
    t_initial_vertex_features = tf.placeholder(dtype=tf.float32,
                                               shape=[None, 4])
elif config['input_features'] == 'rgb':
    t_initial_vertex_features = tf.placeholder(dtype=tf.float32,
                                               shape=[None, 3])
elif config['input_features'] == '0000':
    t_initial_vertex_features = tf.placeholder(dtype=tf.float32,
                                               shape=[None, 4])
elif config['input_features'] == 'i000':
    t_initial_vertex_features = tf.placeholder(dtype=tf.float32,
                                               shape=[None, 4])
elif config['input_features'] == 'i':
def fetch_data(dataset, frame_idx, train_config, config):
    aug_fn = preprocess.get_data_aug(train_config['data_aug_configs'])
    BOX_ENCODING_LEN = get_encoding_len(config['box_encoding_method'])
    box_encoding_fn = get_box_encoding_fn(config['box_encoding_method'])
    box_decoding_fn = get_box_decoding_fn(config['box_encoding_method'])
    graph_generate_fn = get_graph_generate_fn(config['graph_gen_method'])

    cam_rgb_points = dataset.get_cam_points_in_image_with_rgb(
        frame_idx, config['downsample_by_voxel_size'])

    box_label_list = dataset.get_label(frame_idx)
    if 'crop_aug' in train_config:
        cam_rgb_points, box_label_list = sampler.crop_aug(
            cam_rgb_points,
            box_label_list,
            sample_rate=train_config['crop_aug']['sample_rate'],
            parser_kwargs=train_config['crop_aug']['parser_kwargs'])

    cam_rgb_points, box_label_list = aug_fn(cam_rgb_points, box_label_list)

    (vertex_coord_list, keypoint_indices_list, edges_list) = \
        graph_generate_fn(cam_rgb_points.xyz, **config['graph_gen_kwargs'])
    if config['input_features'] == 'irgb':
        input_v = cam_rgb_points.attr
    elif config['input_features'] == '0rgb':
        input_v = np.hstack([
            np.zeros((cam_rgb_points.attr.shape[0], 1)),
            cam_rgb_points.attr[:, 1:]
        ])
    elif config['input_features'] == '0000':
        input_v = np.zeros_like(cam_rgb_points.attr)
    elif config['input_features'] == 'i000':
        input_v = np.hstack([
            cam_rgb_points.attr[:, [0]],
            np.zeros((cam_rgb_points.attr.shape[0], 3))
        ])
    elif config['input_features'] == 'i':
        input_v = cam_rgb_points.attr[:, [0]]
    elif config['input_features'] == '0':
        input_v = np.zeros((cam_rgb_points.attr.shape[0], 1))
    last_layer_graph_level = config['model_kwargs']['layer_configs'][-1][
        'graph_level']
    last_layer_points_xyz = vertex_coord_list[last_layer_graph_level + 1]
    if config['label_method'] == 'yaw':
        cls_labels, boxes_3d, valid_boxes, label_map = \
            dataset.assign_classaware_label_to_points(box_label_list,
            last_layer_points_xyz,
            expend_factor=train_config.get('expend_factor', (1.0, 1.0, 1.0)))
    if config['label_method'] == 'Car':
        cls_labels, boxes_3d, valid_boxes, label_map = \
            dataset.assign_classaware_car_label_to_points(box_label_list,
            last_layer_points_xyz,
            expend_factor=train_config.get('expend_factor', (1.0, 1.0, 1.0)))
    if config['label_method'] == 'Pedestrian_and_Cyclist':
        (cls_labels, boxes_3d, valid_boxes, label_map) =\
            dataset.assign_classaware_ped_and_cyc_label_to_points(
            box_label_list, last_layer_points_xyz,
            expend_factor=train_config.get('expend_factor', (1.0, 1.0, 1.0)))
    encoded_boxes = box_encoding_fn(cls_labels, last_layer_points_xyz,
                                    boxes_3d, label_map)
    input_v = input_v.astype(np.float32)
    vertex_coord_list = [p.astype(np.float32) for p in vertex_coord_list]
    keypoint_indices_list = [e.astype(np.int32) for e in keypoint_indices_list]
    edges_list = [e.astype(np.int32) for e in edges_list]
    cls_labels = cls_labels.astype(np.int32)
    encoded_boxes = encoded_boxes.astype(np.float32)
    valid_boxes = valid_boxes.astype(np.float32)
    return (input_v, vertex_coord_list, keypoint_indices_list, edges_list,
            cls_labels, encoded_boxes, valid_boxes)