Esempio n. 1
0
def train(model_conf:ModelConf, train_set, validation_set=None):
    """
    train model for fashion mnist
    :param model_conf:
    :param train_set:
    :param validation_set:
    :return:
    """
    model_conf.print_conf()

    images_placeholder = tf.placeholder(dtype=tf.float32, shape=[None, model_conf.HEIGHT*model_conf.WIDTH])
    labels_placeholder = tf.placeholder(dtype=tf.int64, shape=[None])
    model = DenseNet(model_conf, is_training=True, images=images_placeholder, labels=labels_placeholder)
    model.build_graph()

    summary_op = tf.summary.merge_all()
    saver = tf.train.Saver(tf.all_variables())

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        summary_writer = tf.summary.FileWriter(model_conf.SUMMARY_DIR, graph=sess.graph)

        for step in range(model_conf.NUM_STEPS):
            train_images, train_labels = train_set.next_batch()
            feed_dict = {images_placeholder: train_images,
                         labels_placeholder: train_labels
                         }
            start_time = time.time()
            [loss_value, acc_value, _, lr_value] = sess.run([model.loss, model.acc, model.train_op, model.learning_rate],
                                                            feed_dict=feed_dict)
            duration = time.time() - start_time
            if step % 10 == 0:
                _print_log('training', step, loss_value, acc_value, lr_value, duration)

            if step % 100 == 0:
                summary_str = sess.run(summary_op, feed_dict=feed_dict)
                summary_writer.add_summary(summary_str, step)

            if step % 500 == 0:
                validation_images = validation_set.images
                validation_labels = validation_set.labels
                feed_dict = {
                    images_placeholder: validation_images,
                    labels_placeholder: validation_labels
                }
                [loss_value, acc_value] = sess.run([model.loss, model.acc], feed_dict=feed_dict)
                logger.info('(validation)loss: %f, acc: %f' % (loss_value, acc_value))

            if (step != 0 and step % 10000 == 0) or step + 1 == model_conf.NUM_STEPS:
                checkpoint_path = os.path.join(model_conf.MODEL_SAVER_DIR, 'model.ckpt')
                saver.save(sess, checkpoint_path, step)
Esempio n. 2
0
def test(model_conf: ModelConf, test_set):
    """
    test the performance of trained model
    :param model_conf:
    :param test_set:
    :return:
    """
    images_placeholder = tf.placeholder(dtype=tf.float32, shape=[None, model_conf.HEIGHT*model_conf.WIDTH])
    labels_placeholder = tf.placeholder(dtype=tf.int64, shape=[model_conf.BATCH_SIZE])
    model = DenseNet(model_conf, is_training=False, images=images_placeholder, labels=labels_placeholder)
    model.build_graph()

    saver = tf.train.Saver()
    sess = tf.Session()
    try:
        ckpt_state = tf.train.get_checkpoint_state(model_conf.MODEL_SAVER_DIR)
    except tf.errors.OutOfRangeError as e:
        logger.info('Can not restore checkpoint %s', e)
        return

    if not (ckpt_state and ckpt_state.model_checkpoint_path):
        logger.info('No model to eval yet at %s', model_conf.MODEL_SAVER_DIR)
        return

    logger.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path)
    saver.restore(sess, ckpt_state.model_checkpoint_path)

    num_step = int(test_set.num_examples/model_conf.BATCH_SIZE)+1
    num_correct = 0
    for step in range(num_step):
        test_images, test_labels = test_set.next_batch()
        feed_dict = {images_placeholder: test_images, labels_placeholder:test_labels}
        [loss, prediction, acc] = sess.run([model.loss, model.prediction, model.acc], feed_dict=feed_dict)
        num_correct += np.sum(np.argmax(prediction, axis=1) == test_labels)
        logger.info("(Test)batch %d, loss=%f, acc=%f" % (step, loss, acc))

    precision = num_correct*1.0/(num_step*model_conf.BATCH_SIZE)
    logger.info("Total precision: %f" % precision)
Esempio n. 3
0
        args.bc_mode = True

    model_params = vars(args)

    if not args.train and not args.test:
        print("You should train or test your network. Please check params.")
        exit()

    # some default params dataset/architecture related
    train_params = get_train_params_by_name(args.dataset)
    print("Params:")
    for k, v in model_params.items():
        print("\t%s: %s" % (k, v))
    print("Train params:")
    for k, v in train_params.items():
        print("\t%s: %s" % (k, v))

    print("Prepare training data...")
    data_provider = get_data_provider_by_name(args.dataset, train_params)
    print("Initialize the model..")
    model = DenseNet(data_provider=data_provider, **model_params)
    if args.train:
        print("Data provider train images: ", data_provider.train.num_examples)
        model.train_all_epochs(train_params)
    if args.test:
        if not args.train:
            model.load_model()
        print("Data provider test images: ", data_provider.test.num_examples)
        print("Testing...")
        loss, accuracy = model.test(data_provider.test, batch_size=200)
        print("mean cross_entropy: %f, mean accuracy: %f" % (loss, accuracy))
Esempio n. 4
0
    print('Run config:')
    for k, v in run_config.get_config().items():
        print('\t%s: %s' % (k, v))
    print('Network config:')
    for k, v in net_config.items():
        print('\t%s: %s' % (k, v))

    print('Prepare training data...')
    data_provider = get_data_provider_by_name(run_config.dataset,
                                              run_config.get_config())

    # set net config
    net_config = DenseNetConfig().set_standard_dense_net(
        data_provider=data_provider, **net_config)
    print('Initialize the model...')
    model = DenseNet(args.path, data_provider, run_config, net_config)

    # save configs
    if args.save_config:
        model.save_config(args.path)

    if args.load_model: model.load_model()
    if args.test:
        # test
        print('Data provider test images: ', data_provider.test.num_examples)
        print('Testing...')
        loss, accuracy = model.test(data_provider.test, batch_size=200)
        print('mean cross_entropy: %f, mean accuracy: %f' % (loss, accuracy))
        json.dump({
            'test_loss': '%s' % loss,
            'test_acc': '%s' % accuracy
Esempio n. 5
0
    if not args.train and not args.test:
        print("You should train or test your network. Please check params.")
        exit()

    # some default params dataset/architecture related
    train_params = train_params_set
    print("Params:")
    for k, v in model_params.items():
        print("\t%s: %s" % (k, v))
    print("Train params:")
    for k, v in train_params.items():
        print("\t%s: %s" % (k, v))
    print("Prepare training data...")
    data_provider = DataProvider()
    print("Initialize the model..")
    model = DenseNet(data_provider=data_provider, **model_params)

    if args.train:
        # print("Data provider train images: ", np.shape(data_provider.train_imgs))
        print("Data provider train images: ")
        model.train_all_epochs(train_params)
    if args.test:
        # model.load_model()
        # print("Data provider test images: ", np.shape(data_provider.test_imgs))
        print("Testing...")
        model.test()
        # model.test(data_provider, batch_size=10)
        # loss, accuracy = model.test(data_provider, batch_size=200)
        # print("mean cross_entropy: %f, mean accuracy: %f" % (loss, accuracy))
Esempio n. 6
0
def extract_feature_batch():
  
  args = parse_opts()
  model_params = vars(args)
  batch_size = args.batch_size

  print("Initialize the model..")
  # fake data_provider
  DataProvider = collections.namedtuple('DataProvider', ['data_shape', 'n_classes'])
  data_provider = DataProvider(data_shape=(img_size, img_size, 1), n_classes=10)
  model = DenseNet(data_provider=data_provider, **model_params)
  end_points = model.end_points
  # for key, value in end_points.iteritems():
  #   print(key, value.get_shape().as_list())
  # restore model
  model.saver.restore(model.sess, args.model_path)
  print("Successfully load model from model path: %s" % args.model_path)

  video_names = [x for x in os.listdir(args.face_dir)]
  video_names.sort()
  avg_num_imgs = 0

  for vid, video_name in enumerate(video_names):
    video_dir = os.path.join(args.face_dir, video_name)
    img_paths = os.listdir(video_dir)
    if len(img_paths) == 0:
      continue

    output_subdir = os.path.join(args.outft_dir, video_name)
    if os.path.exists(output_subdir):
      continue
    else:
      os.makedirs(output_subdir)

    img_paths.sort(key=lambda x:int(x.split('.')[0]))
    avg_num_imgs += len(img_paths)

    imgs = []
    for img_path in img_paths:
      img_path = os.path.join(video_dir, img_path)
      img = cv2.imread(img_path)
      img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
      img = cv2.resize(img, (img_size, img_size))
      imgs.append(img)

    imgs = (np.array(imgs, np.float32) - images_mean) / images_std
    imgs = np.expand_dims(imgs, 3)
    # pool4.shape=(batch_size, 4, 4, 256)
    # fc5.shape=fc6.shape=(batch_size, 1, 1, 512)
    # prob.shape=(batch_size, num_classes)
    fcs, probs = [], []
    for i in xrange(0, imgs.shape[0], batch_size):
      feed_dict = {
        model.images: imgs[i: i + batch_size],
        model.is_training: False
      }
      fc, prob = model.sess.run(
        [end_points['fc'], end_points['preds']],
        feed_dict=feed_dict)
      # prev_last_pools.extend(prev_last_pool)
      fcs.extend(fc)
      probs.extend(prob)

    # prev_last_pools = np.array(prev_last_pools, np.float32)
    fcs = np.array(fcs, np.float32)
    probs = np.array(probs, np.float32)

    
    # with open(os.path.join(output_subdir, 'pool.npy'), 'wb') as f:
    #   np.save(f, prev_last_pools)
    with open(os.path.join(output_subdir, 'fc.npy'), 'wb') as f:
      np.save(f, fcs)
    with open(os.path.join(output_subdir, 'prob.npy'), 'wb') as f:
      np.save(f, probs)

    print(vid, video_name, len(img_paths), 
      fcs.shape, probs.shape)

  avg_num_imgs /= float(len(video_names))
  print('average faces per video', avg_num_imgs)
    torch_device = torch.device("cuda")
    # load images that you want to visualize
    log_path = save_path + '/TP.txt'

    # For example, TP.txt file contains name of image files manully selected from
    # the test set, which are classified as true positive images.
    # ex) 20080169_1_1-0-74-16.13539388

    f = open(log_path, 'r')
    lines = f.readlines()
    lines = np.array(lines)
    lines = np.char.rstrip(lines)

    model = DenseNet(growthRate=12,
                     depth=40,
                     reduction=0.5,
                     bottleneck=True,
                     nClasses=2)
    model = nn.DataParallel(model).to(torch_device)
    model.load_state_dict(ckpoint['network'])
    # by changing 'hooks', you can choose the layer which you want to visualize
    # to check name of layers, use model.module to print out the whole structure of the neural net
    grad_cam = GradCam(model=model.module,
                       hooks=["dense2"],
                       device=torch_device)

    test_path = "/home/intern/osteo_classification/data/test/"
    test_loader = loader(test_path,
                         1,
                         transform=None,
                         sampler='',
Esempio n. 8
0
        print("You should train or test your network. Please check arguments.")
        exit()

    # Get model params (the arguments) and train params (depend on dataset).
    model_params = vars(args)
    train_params = get_train_params_by_name(args.dataset)
    print("\nModel parameters (specified as arguments):")
    for k, v in model_params.items():
        print("\t%s: %s" % (k, v))
    print("Train parameters (depend on specified dataset):")
    for k, v in train_params.items():
        print("\t%s: %s" % (k, v))

    # Train and/or test the specified model.
    print("\nPrepare training data...")
    data_provider = get_data_provider_by_name(args.dataset, train_params)
    print("Initialize the model...")
    model = DenseNet(data_provider=data_provider, **model_params)
    if args.train:
        print("Data provider train images: ", data_provider.train.num_examples)
        model.train_all_epochs(train_params)
    if args.test:
        if not args.train:
            model.load_model()
        print("Data provider test images: ", data_provider.test.num_examples)
        print("Testing...")
        loss, accuracy = model.test(data_provider.test, batch_size=200)
        model.print_pertinent_features(loss, accuracy, -1, True)
        print("mean cross_entropy: %f, mean accuracy: %f" %
              (loss[-1], accuracy))
Esempio n. 9
0
        print("You should train or test your network. Please check params.")
        exit()

    # some default params dataset/architecture related
    train_params = get_train_params_by_name(args.dataset)
    print("Params:")
    for k, v in model_params.items():
        print("\t%s: %s" % (k, v))
    print("Train params:")
    for k, v in train_params.items():
        print("\t%s: %s" % (k, v))

    print("Prepare training data...")
    data_provider = get_data_provider_by_name(args.dataset, train_params)
    print("Initialize the model..")
    model = DenseNet(data_provider=data_provider, **model_params)
    model_path = 'saves/%s_growth_rate=%d_depth=%d_dataset_%s/' % (
        args.model_type, args.growth_rate, args.depth, args.dataset)
    print(model_path)
    if args.train:
        current_step = model.load_model(model_path)
        print("Data provider train images: ", data_provider.train.num_examples)
        model.train_all_epochs(train_params, args.epoch, current_step)
    if args.test:
        if not args.train:
            model.load_model(model_path)
        print("Data provider test images: ", data_provider.test.num_examples)
        print("Testing...")
        loss, accuracy = model.test(data_provider.test, batch_size=200)
        print("mean cross_entropy: %f, mean accuracy: %f" % (loss, accuracy))
Esempio n. 10
0
def main(unused_argv):
    # Load training and eval data
    # export_cifar('/backups/datasets/cifar-10-python.tar.gz', '/backups/work/CIFAR10')
    imagenet = ImageNet('/backups/work/ILSVRC2017/ILSVRC',
                        shuffle=True,
                        normalize=True,
                        augment=False,
                        one_hot=False,
                        batch_size=128)
    # imagenet = CIFAR('/backups/work/CIFAR10',
    #                  shuffle=True, normalize=True, augment=True, one_hot=False, batch_size=32)

    densenet = DenseNet(num_classes=imagenet.num_classes,
                        growth_rate=12,
                        bc_mode=True,
                        block_config=(6, 12, 24, 16),
                        dropout_rate=0.2,
                        reduction=0.5,
                        weight_decay=1e-4,
                        nesterov_momentum=0.9)

    def train_input_fn(learning_rate):
        dataset = imagenet.train_set
        dataset = dataset.repeat(1)
        dataset = dataset.skip(imagenet.train_set_size % imagenet.batch_size)
        iterator = dataset.make_one_shot_iterator()
        features, labels = iterator.get_next()
        return {'images': features, 'learning_rate': learning_rate}, labels

    def eval_input_fn():
        dataset = imagenet.val_set
        dataset = dataset.repeat(1)
        iterator = dataset.make_one_shot_iterator()
        features, labels = iterator.get_next()
        return {'images': features}, labels

    # Create the Estimator
    sess_config = tf.ConfigProto()
    sess_config.gpu_options.allow_growth = True
    config = tf.estimator.RunConfig().replace(session_config=sess_config)

    classifier = tf.estimator.Estimator(
        model_fn=densenet.imagenet_model_fn,
        model_dir="/backups/work/logs/imagenet_model1",
        # params={'image_shape': imagenet.image_shape},
        config=config)

    # Set up logging
    # tensors_to_log = {"accuracy": "Accuracy/train_accuracy"}
    # logging_hook = tf.train.LoggingTensorHook(
    #     tensors=tensors_to_log, every_n_iter=100)

    # debug_hook = tfdbg.LocalCLIDebugHook()
    # debug_hook.add_tensor_filter("has_inf_or_nan", tfdbg.has_inf_or_nan)

    # # Train the model
    for i in range(30):
        # Train the model
        classifier.train(input_fn=lambda: train_input_fn(learning_rate=0.1))

        # Evaluate the model and print results
        eval_results = classifier.evaluate(input_fn=eval_input_fn)
        print(eval_results)

    for i in range(30):
        # Train the model
        classifier.train(input_fn=lambda: train_input_fn(learning_rate=0.01))

        # Evaluate the model and print results
        eval_results = classifier.evaluate(input_fn=eval_input_fn)
        print(eval_results)

    for i in range(30):
        # Train the model
        classifier.train(input_fn=lambda: train_input_fn(learning_rate=0.001))

        # Evaluate the model and print results
        eval_results = classifier.evaluate(input_fn=eval_input_fn)
        print(eval_results)

    for i in range(10):
        # Train the model
        classifier.train(input_fn=lambda: train_input_fn(learning_rate=0.0001))

        # Evaluate the model and print results
        eval_results = classifier.evaluate(input_fn=eval_input_fn)
        print(eval_results)
    # some default params dataset/architecture related
    train_params = get_train_params_by_name(args.dataset)
    print("Params:")
    for k, v in model_params.items():
        print("\t%s: %s" % (k, v))
    print("Train params:")
    for k, v in train_params.items():
        print("\t%s: %s" % (k, v))

    print("Prepare training data...")
    data_provider = get_data_provider_by_name(args.dataset, train_params)
    print("Initialize the model..")
    model = DenseNet(for_test_only=False,
                     init_variables=None,
                     init_global=None,
                     bottleneck_output_size=None,
                     first_output_features=None,
                     data_provider=data_provider,
                     **model_params)
    if args.train:
        print("Data provider train images: ", data_provider.train.num_examples)
        model.train_all_epochs(train_params)
    if args.comprese:
        if not args.train:
            model.load_model()
        old_varaible = model.get_trainable_variables_value()
        old_param_num = model.total_parameters
        print("Commpresing the network")
        comprese_model = CompreseDenseNet(model, args.clusster_num)
        all_new_comprese_kernels, all_new_bottleneck_kernels, all_new_batch_norm, all_new_transion_kernels, all_new_batch_norm_for_transion, new_W, new_transion_to_class_batch_norm = comprese_model.comprese(
        )
Esempio n. 12
0
                         drop_last=True,
                         late_fusion=arg.late_fuse)

    # the default loss function is the cross entropy loss

    class_loss = nn.CrossEntropyLoss()

    if arg.late_fuse:
        net = LateFuse_DenseNet(growthRate=arg.growthRate,
                                depth=arg.depth,
                                reduction=0.5,
                                bottleneck=True,
                                nClasses=2)
        net = nn.DataParallel(net).to(torch_device)
        model = LateFuseClassifyTrainer(arg,
                                        net,
                                        torch_device,
                                        class_loss=class_loss)
    else:
        net = DenseNet(growthRate=arg.growthRate,
                       depth=arg.depth,
                       reduction=0.5,
                       bottleneck=True,
                       nClasses=2)
        net = nn.DataParallel(net).to(torch_device)
        model = ClassifyTrainer(arg, ent, torch_device, class_loss=class_loss)

    if arg.test is False:
        model.train(train_loader, val_loader)
    model.test(test_loader, val_loader)