Esempio n. 1
0
 def build_model(self):
     """
         You must define your model in this function, including define the graph and allocate GPU.
         This function will be called in @see `MotionImitationRunnerProcessor.run()`.
     Returns:
         None
     """
     # set imitator
     self.model = Imitator(self.opt)
Esempio n. 2
0
def setup(opts):
    shutil.move(opts['checkpoint_dir'], 'outputs/checkpoints')
    shutil.move(opts['pretrained_renderer_dir'], 'assets/pretrains')
    opt = TestOptions().parse()
    opt.bg_ks = 13
    opt.ft_ks = 3
    opt.has_detector = True
    opt.front_warp = True
    swapper = Swapper(opt=opt)
    imitator = Imitator(opt)
    return swapper, imitator
def generate_actor_result(test_opt, src_img_path):
    imitator = Imitator(test_opt)
    src_img_name = os.path.split(src_img_path)[-1][:-4]
    test_opt.src_path = src_img_path

    if test_opt.post_tune:
        adaptive_personalize(test_opt, imitator, visualizer=None)
    else:
        imitator.personalize(test_opt.src_path, visualizer=None)

    action_list_dict = {'dance': MIXAMO_DANCE_ACTION_IDX_LIST,
                        'base': MIXAMO_BASE_ACTION_IDX_LIST,
                        'acrobat': MIXAMO_ACROBAT_ACTION_IDX_LIST}

    for action_type in ['dance', 'base', 'acrobat']:
        for i in action_list_dict[action_type]:
            if test_opt.output_dir:
                pred_output_dir = os.path.join(test_opt.output_dir, 'mixamo_preds')
                if os.path.exists(pred_output_dir):
                    os.system("rm -r %s" % pred_output_dir)
                mkdir(pred_output_dir)
            else:
                pred_output_dir = None

            print(pred_output_dir)
            tgt_smpls = load_mixamo_smpl(i)

            imitator.inference_by_smpls(tgt_smpls, cam_strategy='smooth', output_dir=pred_output_dir, visualizer=None)

            save_dir = os.path.join(test_opt.output_dir, src_img_name, action_type)
            mkdir(save_dir)

            output_mp4_path = os.path.join(save_dir, 'mixamo_%.4d_%s.mp4' % (i, src_img_name))
            img_path_list = sorted(glob.glob('%s/*.jpg' % pred_output_dir))
            make_video(output_mp4_path, img_path_list, save_frames_dir=None, fps=30)
def generate_T_pose_novel_view_result(test_opt, src_img_path):
    imitator = Imitator(test_opt)
    src_img_name = os.path.split(src_img_path)[-1][:-4]
    test_opt.src_path = src_img_path

    if test_opt.post_tune:
        adaptive_personalize(test_opt, imitator, visualizer=None)
    else:
        imitator.personalize(test_opt.src_path, visualizer=None)

    if test_opt.output_dir:
        pred_output_dir = os.path.join(test_opt.output_dir, 'T_novel_view_preds')
        if os.path.exists(pred_output_dir):
            os.system("rm -r %s" % pred_output_dir)
        mkdir(pred_output_dir)
    else:
        pred_output_dir = None

    print(pred_output_dir)
    tgt_smpls = create_T_pose_novel_view_smpl()

    imitator.inference_by_smpls(tgt_smpls, cam_strategy='smooth', output_dir=pred_output_dir, visualizer=None)

    save_dir = os.path.join(test_opt.output_dir, src_img_name)
    mkdir(save_dir)

    output_mp4_path = os.path.join(save_dir, 'T_novel_view_%s.mp4' % src_img_name)
    img_path_list = sorted(glob.glob('%s/*.jpg' % pred_output_dir))
    make_video(output_mp4_path, img_path_list, save_frames_dir=None, fps=30)

    # clean other left
    clean(test_opt.output_dir)
Esempio n. 5
0
                              verbose=False)


if __name__ == "__main__":
    # meta imitator
    test_opt = TestOptions().parse()

    if test_opt.ip:
        visualizer = VisdomVisualizer(env=test_opt.name,
                                      ip=test_opt.ip,
                                      port=test_opt.port)
    else:
        visualizer = None

    # set imitator
    imitator = Imitator(test_opt)

    if test_opt.post_tune:
        adaptive_personalize(test_opt, imitator, visualizer)

    imitator.personalize(test_opt.src_path, visualizer=visualizer)
    print('\n\t\t\tPersonalization: completed...')

    if test_opt.save_res:
        pred_output_dir = mkdir(os.path.join(test_opt.output_dir, 'imitators'))
        pred_output_dir = clear_dir(pred_output_dir)
    else:
        pred_output_dir = None

    print('\n\t\t\tImitating `{}`'.format(test_opt.tgt_path))
    tgt_paths = scan_tgt_paths(test_opt.tgt_path, itv=1)
Esempio n. 6
0
class LWGEvaluatorModel(MotionImitationModel):
    def __init__(self, opt, output_dir):
        super().__init__(output_dir)

        self.opt = opt

        if self.opt.ip:
            visualizer = VisdomVisualizer(env=self.opt.name,
                                          ip=self.opt.ip,
                                          port=self.opt.port)
        else:
            visualizer = None

        self.visualizer = visualizer
        self.model = None

    def imitate(self, src_infos: Dict[str, Any],
                ref_infos: Dict[str, Any]) -> List[str]:
        """
            Running the motion imitation of the self.model, based on the source information with respect to the
            provided reference information. It returns the full paths of synthesized images.
        Args:
            src_infos (dict): the source information contains:
                --images (list of str): the list of full paths of source images (the length is 1)
                --smpls (np.ndarray): (length of images, 85)
                --kps (np.ndarray): (length of images, 19, 2)
            ref_infos (dict): the reference information contains:
                --images (list of str): the list of full paths of reference images.
                --smpls (np.ndarray): (length of images, 85)
                --kps (np.ndarray): (length of images, 19, 2)
                --self_imitation (bool): the flag indicates whether it is self-imitation or not.

        Returns:
            preds_files (list of str): full paths of synthesized images with respects to the images in ref_infos.
        """

        tgt_paths = ref_infos["images"]
        tgt_smpls = ref_infos["smpls"]
        self_imitation = ref_infos["self_imitation"]
        if self_imitation:
            cam_strategy = "copy"
            out_dir = self.si_out_dir
            count = self.num_preds_si
            self.num_preds_si += len(tgt_paths)
        else:
            cam_strategy = "smooth"
            out_dir = self.ci_out_dir
            count = self.num_preds_ci
            self.num_preds_ci += len(tgt_paths)
        outputs = self.model.inference(tgt_paths,
                                       tgt_smpls=tgt_smpls,
                                       cam_strategy=cam_strategy,
                                       visualizer=None,
                                       verbose=True)

        all_preds_files = []
        for i, preds in enumerate(outputs):
            filename = "{:0>8}.jpg".format(count)
            pred_file = os.path.join(out_dir, 'pred_' + filename)
            count += 1

            cv_utils.save_cv2_img(preds, pred_file, normalize=True)
            all_preds_files.append(pred_file)

        return all_preds_files

    def build_model(self):
        """
            You must define your model in this function, including define the graph and allocate GPU.
            This function will be called in @see `MotionImitationRunnerProcessor.run()`.
        Returns:
            None
        """
        # set imitator
        self.model = Imitator(self.opt)

    def personalization(self, src_infos):
        """
            some task/method specific data pre-processing or others.
        Args:
            src_infos (dict): the source information contains:
                --images (list of str): the list of full paths of source images (the length is 1)
                --smpls (np.ndarray): (length of images, 85)
                --kps (np.ndarray): (length of images, 19, 2)

        Returns:
            processed_src_infos (dict): the source information contains:
                --images (list of str): the list of full paths of source images (the length is 1)
                --smpls (np.ndarray): (length of images, 85)
                --kps (np.ndarray): (length of images, 19, 2)
                ...
        """

        # 1. load the pretrain model
        self.model._load_params(self.model.generator, self.opt.load_path)

        # 2. post personalization
        if self.opt.post_tune:
            self.opt.src_path = src_infos["images"][0]
            adaptive_personalize(self.opt, self.model, self.visualizer)

        processed_src_infos = src_infos
        return processed_src_infos

    def terminate(self):
        """
            Close the model session, like if the model is based on TensorFlow, it needs to call sess.close() to
            dealloc the resources.
        Returns:

        """
        pass
Esempio n. 7
0
def main():
    opt = TrainOptions().parse()

    opt.data_root = 'data/people_snapshot_public'
    opt.checkpoints_dir = 'outputs/checkpoints/imitator'
    opt.log_dir = 'outputs/logs/imitator'
    opt.use_loss_gan = True
    opt.use_loss_rec = True
    opt.use_loss_mask = True
    opt.use_loss_verts = False
    opt.lambda_gan = 1
    opt.lambda_rec = 10
    opt.lambda_mask = 0.1
    opt.lambda_verts = 10
    opt.isHres = False
    opt.batch_size = 4
    opt.epochs = 20
    opt.step_size = 2
    opt.lr_gamma = 0.5

    train_dataset = People_Snapshot_Dataset(data_root=opt.data_root,
                                            image_size=opt.image_size,
                                            get_uv=True)
    train_loader = DataLoader(train_dataset,
                              batch_size=opt.batch_size,
                              shuffle=True)

    model = Imitator(opt)

    for fn in os.listdir(opt.log_dir):
        os.remove(os.path.join(opt.log_dir, fn))

    if opt.resume:
        model.load_checkpoint(opt.start_epoch)

    model.train()

    total = len(train_loader.dataset)
    for epoch in range(opt.start_epoch, opt.epochs):
        train_num = 0
        for i, data in enumerate(train_loader):

            model.set_input(data)
            model.optimize_parameters()

            N = data['shape'].size(0)
            train_num += N

            if (i + 1) % opt.print_freq == 0 or train_num == total:
                loss_vis = model.get_loss_vis()
                mess = "Epoch %d: [%d / %d]" % (epoch, train_num, total)
                for name in loss_vis:
                    mess += " | " + "%s: %.7f" % (name, loss_vis[name])
                print(mess)

                if (i + 1) % (opt.print_freq * 10) == 0 or train_num == total:
                    imgs_vis = model.visualize()

                    img_src_gt = imgs_vis['img_src_gt'].detach().cpu()
                    img_src_gt = make_grid(img_src_gt,
                                           nrow=img_src_gt.size(0),
                                           padding=0)

                    img_ref_gt = imgs_vis['img_ref_gt'].detach().cpu()
                    img_ref_gt = make_grid(img_ref_gt,
                                           nrow=img_ref_gt.size(0),
                                           padding=0)

                    img_masked_src = imgs_vis['img_masked_src'].detach().cpu()
                    img_masked_src = make_grid(img_masked_src,
                                               nrow=img_masked_src.size(0),
                                               padding=0)

                    img_masked_ref = imgs_vis['img_masked_ref'].detach().cpu()
                    img_masked_ref = make_grid(img_masked_ref,
                                               nrow=img_masked_ref.size(0),
                                               padding=0)

                    bg = imgs_vis['background'].detach().cpu()
                    bg = make_grid(bg, nrow=bg.size(0), padding=0)

                    img_src_rec = imgs_vis['img_src_rec'].detach().cpu()
                    img_src_rec = make_grid(img_src_rec,
                                            nrow=img_src_rec.size(0),
                                            padding=0)

                    img_ref_rec = imgs_vis['img_ref_rec'].detach().cpu()
                    img_ref_rec = make_grid(img_ref_rec,
                                            nrow=img_ref_rec.size(0),
                                            padding=0)

                    save_image([
                        img_src_gt, img_ref_gt, img_masked_src, img_masked_ref,
                        bg, img_src_rec, img_ref_rec
                    ],
                               os.path.join(
                                   opt.log_dir,
                                   "epoch_{:0>2d}_iter_{:0>5d}.png".format(
                                       epoch, i)),
                               nrow=1,
                               padding=0)

        model.save_checkpoint(epoch)
        model.update_learning_rate()