Esempio n. 1
0
    def __init__(self,
                 waveglow,
                 filter_length=1024,
                 n_overlap=4,
                 win_length=1024,
                 mode='zeros'):
        super(Denoiser, self).__init__()
        self.stft = STFT(filter_length=filter_length,
                         hop_length=int(filter_length / n_overlap),
                         win_length=win_length).cuda()
        if mode == 'zeros':
            mel_input = torch.zeros((1, 80, 88),
                                    dtype=waveglow.upsample.weight.dtype,
                                    device=waveglow.upsample.weight.device)
        elif mode == 'normal':
            mel_input = torch.randn((1, 80, 88),
                                    dtype=waveglow.upsample.weight.dtype,
                                    device=waveglow.upsample.weight.device)
        else:
            raise Exception("Mode {} if not supported".format(mode))

        with torch.no_grad():
            bias_audio = waveglow.infer(mel_input, sigma=0.0).float()
            bias_spec, _ = self.stft.transform(bias_audio)

        self.register_buffer('bias_spec', bias_spec[:, :, 0][:, :, None])
Esempio n. 2
0
class Denoiser(torch.nn.Module):
    """ Removes model bias from audio produced with waveglow """
    def __init__(self,
                 waveglow,
                 filter_length=1024,
                 n_overlap=4,
                 win_length=1024,
                 mode='zeros'):
        super(Denoiser, self).__init__()
        self.stft = STFT(filter_length=filter_length,
                         hop_length=int(filter_length / n_overlap),
                         win_length=win_length).cuda()
        if mode == 'zeros':
            mel_input = torch.zeros((1, 80, 88),
                                    dtype=waveglow.upsample.weight.dtype,
                                    device=waveglow.upsample.weight.device)
        elif mode == 'normal':
            mel_input = torch.randn((1, 80, 88),
                                    dtype=waveglow.upsample.weight.dtype,
                                    device=waveglow.upsample.weight.device)
        else:
            raise Exception("Mode {} if not supported".format(mode))

        with torch.no_grad():
            bias_audio = waveglow.infer(mel_input, sigma=0.0).float()
            bias_spec, _ = self.stft.transform(bias_audio)

        self.register_buffer('bias_spec', bias_spec[:, :, 0][:, :, None])

    def forward(self, audio, strength=0.1):
        audio_spec, audio_angles = self.stft.transform(audio.cuda().float())
        audio_spec_denoised = audio_spec - self.bias_spec * strength
        audio_spec_denoised = torch.clamp(audio_spec_denoised, 0.0)
        audio_denoised = self.stft.inverse(audio_spec_denoised, audio_angles)
        return audio_denoised