Esempio n. 1
0
def createModel(config):
    model = None
    arch = config['arch']
    lossType = config['loss']
    if (arch == 'lenet5'):
        model = LeNet5()

    if (lossType == 'crossEntropy'):
        criterion = torch.nn.CrossEntropyLoss().to(config['device'])

    if (arch == 'rnn'):
        model = models.RNNModel(config["model"], config["ntokens"],
                                config["emsize"], config["nhid"],
                                config["nlayers"], config["dropout"],
                                config["tied"])
    if (lossType == 'crossEntropy'):
        criterion = torch.nn.NLLLoss().to(config['device'])
    if (arch == 'textBC'):
        model = TextBinaryClassificationModel(config["modelParams"])
        criterion = None
    if (arch == 'hateSpeech'):
        model = HateSpeechModel(config["modelParams"])
        criterion = None

    model.to(config['device'])
    return model, criterion
Esempio n. 2
0
def calculate_kid_given_paths(paths, batch_size, cuda, dims, model_type='inception'):
    """Calculates the KID of two paths"""
    pths = []
    for p in paths:
        if not os.path.exists(p):
            raise RuntimeError('Invalid path: %s' % p)
        if os.path.isdir(p):
            pths.append(p)
        elif p.endswith('.npy'):
            np_imgs = np.load(p)
            if np_imgs.shape[0] > 50000: np_imgs = np_imgs[np.random.permutation(np.arange(np_imgs.shape[0]))][:50000]
            pths.append(np_imgs)

    if model_type == 'inception':
        block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
        model = InceptionV3([block_idx])
    elif model_type == 'lenet':
        model = LeNet5()
        model.load_state_dict(torch.load('./models/lenet.pth'))
    if cuda:
       model.cuda()

    act_true = _compute_activations(pths[0], model, batch_size, dims, cuda, model_type)
    pths = pths[1:]
    results = []
    for j, pth in enumerate(pths):
        print(paths[j+1])
        actj = _compute_activations(pth, model, batch_size, dims, cuda, model_type)
        kid_values = polynomial_mmd_averages(act_true, actj, n_subsets=100)
        results.append((paths[j+1], kid_values[0].mean(), kid_values[0].std()))
    return results
Esempio n. 3
0
    def init_erm_phase(self):

        if self.args.ctr_model_name == 'lenet':
            from models.lenet import LeNet5
            ctr_phi = LeNet5().to(self.cuda)
        if self.args.ctr_model_name == 'alexnet':
            from models.alexnet import alexnet
            ctr_phi = alexnet(self.args.out_classes, self.args.pre_trained,
                              'matchdg_ctr').to(self.cuda)
        if self.args.ctr_model_name == 'fc':
            from models.fc import FC
            fc_layer = 0
            ctr_phi = FC(self.args.out_classes, fc_layer).to(self.cuda)
        if 'resnet' in self.args.ctr_model_name:
            from models.resnet import get_resnet
            fc_layer = 0
            ctr_phi = get_resnet(self.args.ctr_model_name,
                                 self.args.out_classes, fc_layer,
                                 self.args.img_c, self.args.pre_trained,
                                 self.args.os_env).to(self.cuda)
        if 'densenet' in self.args.ctr_model_name:
            from models.densenet import get_densenet
            fc_layer = 0
            ctr_phi = get_densenet(self.args.ctr_model_name,
                                   self.args.out_classes, fc_layer,
                                   self.args.img_c, self.args.pre_trained,
                                   self.args.os_env).to(self.cuda)

        # Load MatchDG CTR phase model from the saved weights
        if self.args.os_env:
            base_res_dir = os.getenv(
                'PT_DATA_DIR'
            ) + '/' + self.args.dataset_name + '/' + 'matchdg_ctr' + '/' + self.args.ctr_match_layer + '/' + 'train_' + str(
                self.args.train_domains)
        else:
            base_res_dir = "results/" + self.args.dataset_name + '/' + 'matchdg_ctr' + '/' + self.args.ctr_match_layer + '/' + 'train_' + str(
                self.args.train_domains)
        save_path = base_res_dir + '/Model_' + self.ctr_load_post_string + '.pth'
        ctr_phi.load_state_dict(torch.load(save_path))
        ctr_phi.eval()

        #Inferred Match Case
        if self.args.match_case == -1:
            inferred_match = 1
            data_match_tensor, label_match_tensor, indices_matched, perfect_match_rank = get_matched_pairs(
                self.args, self.cuda, self.train_dataset, self.domain_size,
                self.total_domains, self.training_list_size, ctr_phi,
                self.args.match_case, self.args.perfect_match, inferred_match)
        # x% percentage match initial strategy
        else:
            inferred_match = 0
            data_match_tensor, label_match_tensor, indices_matched, perfect_match_rank = get_matched_pairs(
                self.args, self.cuda, self.train_dataset, self.domain_size,
                self.total_domains, self.training_list_size, ctr_phi,
                self.args.match_case, self.args.perfect_match, inferred_match)

        return data_match_tensor, label_match_tensor
Esempio n. 4
0
def calculate_fid_given_paths(paths,
                              batch_size,
                              cuda,
                              dims,
                              bootstrap=True,
                              n_bootstraps=10,
                              model_type='inception'):
    """Calculates the FID of two paths"""
    pths = []
    for p in paths:
        if not os.path.exists(p):
            raise RuntimeError('Invalid path: %s' % p)
        if os.path.isdir(p):
            pths.append(p)
        elif p.endswith('.npy'):
            np_imgs = np.load(p)
            if np_imgs.shape[0] > 25000:
                np_imgs = np_imgs[:50000]
            pths.append(np_imgs)

    block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]

    if model_type == 'inception':
        model = InceptionV3([block_idx])
    elif model_type == 'lenet':
        model = LeNet5()
        model.load_state_dict(
            torch.load('/content/gan-metrics-pytorch/models/lenet.pth'))
    if cuda:
        model.cuda()

    act_true = _compute_activations(pths[0], model, batch_size, dims, cuda,
                                    model_type)
    n_bootstraps = n_bootstraps if bootstrap else 1
    pths = pths[1:]
    results = []
    for j, pth in enumerate(pths):
        print(paths[j + 1])
        actj = _compute_activations(pth, model, batch_size, dims, cuda,
                                    model_type)
        fid_values = np.zeros((n_bootstraps))
        with tqdm(range(n_bootstraps), desc='FID') as bar:
            for i in bar:
                act1_bs = act_true[np.random.choice(act_true.shape[0],
                                                    act_true.shape[0],
                                                    replace=True)]
                act2_bs = actj[np.random.choice(actj.shape[0],
                                                actj.shape[0],
                                                replace=True)]
                m1, s1 = calculate_activation_statistics(act1_bs)
                m2, s2 = calculate_activation_statistics(act2_bs)
                fid_values[i] = calculate_frechet_distance(m1, s1, m2, s2)
                bar.set_postfix({'mean': fid_values[:i + 1].mean()})
        results.append((paths[j + 1], fid_values.mean(), fid_values.std()))
    return results
Esempio n. 5
0
def createModel(config):
    model = None
    arch = config['modelConf']['arch']
    if (arch == 'lenet'):
        model = LeNet5()

    if (arch == 'textBC'):
        model = TextBinaryClassificationModel(config["modelConf"])

    model.to(config['device'])
    return model
Esempio n. 6
0
    def get_model(self, run_matchdg_erm=0):

        if self.args.model_name == 'lenet':
            from models.lenet import LeNet5
            phi = LeNet5()

        if self.args.model_name == 'fc':
            from models.fc import FC
            if self.args.method_name in ['csd', 'matchdg_ctr']:
                fc_layer = 0
            else:
                fc_layer = self.args.fc_layer
            phi = FC(self.args.out_classes, fc_layer)

        if self.args.model_name == 'domain_bed_mnist':
            from models.domain_bed_mnist import DomainBed
            phi = DomainBed(self.args.img_c)

        if self.args.model_name == 'alexnet':
            from models.alexnet import alexnet
            if self.args.method_name in ['csd', 'matchdg_ctr']:
                fc_layer = 0
            else:
                fc_layer = self.args.fc_layer
            phi = alexnet(self.args.model_name, self.args.out_classes,
                          fc_layer, self.args.img_c, self.args.pre_trained,
                          self.args.os_env)

        if 'resnet' in self.args.model_name:
            from models.resnet import get_resnet
            if self.args.method_name in ['csd', 'matchdg_ctr']:
                fc_layer = 0
            else:
                fc_layer = self.args.fc_layer
            phi = get_resnet(self.args.model_name, self.args.out_classes,
                             fc_layer, self.args.img_c, self.args.pre_trained,
                             self.args.os_env)

        if 'densenet' in self.args.model_name:
            from models.densenet import get_densenet
            if self.args.method_name in ['csd', 'matchdg_ctr']:
                fc_layer = 0
            else:
                fc_layer = self.args.fc_layer
            phi = get_densenet(self.args.model_name, self.args.out_classes,
                               fc_layer, self.args.img_c,
                               self.args.pre_trained, self.args.os_env)

        print('Model Architecture: ', self.args.model_name)

        self.phi = phi.to(self.cuda)
        self.load_model(run_matchdg_erm)

        return
Esempio n. 7
0
    def setup(self, flags):
        torch.backends.cudnn.deterministic = flags.deterministic
        print('torch.backends.cudnn.deterministic:', torch.backends.cudnn.deterministic)
        fix_all_seed(flags.seed)

        self.network = LeNet5(num_classes=flags.num_classes)
        self.network = self.network.cuda()

        print(self.network)
        print('flags:', flags)
        if not os.path.exists(flags.logs):
            os.makedirs(flags.logs)

        flags_log = os.path.join(flags.logs, 'flags_log.txt')
        write_log(flags, flags_log)
Esempio n. 8
0
 def get_model(self):
     
     if self.args.model_name == 'lenet':
         from models.lenet import LeNet5
         phi= LeNet5()
     if self.args.model_name == 'alexnet':
         from models.alexnet import alexnet
         phi= alexnet(self.args.out_classes, self.args.pre_trained, self.args.method_name)
     if self.args.model_name == 'resnet18':
         from models.resnet import get_resnet
         phi= get_resnet('resnet18', self.args.out_classes, self.args.method_name, 
                         self.args.img_c, self.args.pre_trained)
     
     print('Model Architecture: ', self.args.model_name)
     phi= phi.to(self.cuda)
     return phi
Esempio n. 9
0
    def get_model(self, run_matchdg_erm=0):

        if self.args.model_name == 'lenet':
            from models.lenet import LeNet5
            phi = LeNet5()
        if self.args.model_name == 'alexnet':
            from models.alexnet import alexnet
            phi = alexnet(self.args.out_classes, self.args.pre_trained,
                          self.args.method_name)
        if self.args.model_name == 'domain_bed_mnist':
            from models.domain_bed_mnist import DomainBed
            phi = DomainBed(self.args.img_c)
        if 'resnet' in self.args.model_name:
            from models.resnet import get_resnet
            phi = get_resnet(self.args.model_name, self.args.out_classes,
                             self.args.method_name, self.args.img_c,
                             self.args.pre_trained)

        print('Model Architecture: ', self.args.model_name)

        self.phi = phi.to(self.cuda)
        self.load_model(run_matchdg_erm)

        return
Esempio n. 10
0
    def get_model(self):

        if self.args.model_name == 'lenet':
            from models.lenet import LeNet5
            phi = LeNet5()
        if self.args.model_name == 'alexnet':
            from models.alexnet import alexnet
            phi = alexnet(self.args.out_classes, self.args.pre_trained,
                          self.args.method_name)
        if self.args.model_name == 'domain_bed_mnist':
            from models.domain_bed_mnist import DomainBed
            phi = DomainBed(self.args.img_c)
        if 'resnet' in self.args.model_name:
            from models.resnet import get_resnet
            if self.args.method_name in ['csd', 'matchdg_ctr']:
                fc_layer = 0
            else:
                fc_layer = self.args.fc_layer
            phi = get_resnet(self.args.model_name, self.args.out_classes,
                             fc_layer, self.args.img_c, self.args.pre_trained)

        print('Model Architecture: ', self.args.model_name)
        phi = phi.to(self.cuda)
        return phi