def get_matches(deses_SP): from models.model_wrap import PointTracker tracker = PointTracker(max_length=2, nn_thresh=1.2) f = lambda x: x.cpu().detach().numpy() # tracker = PointTracker(max_length=2, nn_thresh=1.2) # print("deses_SP[1]: ", deses_SP[1].shape) matching_mask = tracker.nn_match_two_way(f(deses_SP[0]).T, f(deses_SP[1]).T, nn_thresh=1.2) return matching_mask
def getMatches(data): from models.model_wrap import PointTracker desc = data['desc'] warped_desc = data['warped_desc'] nn_thresh = 1.2 print("nn threshold: ", nn_thresh) tracker = PointTracker(max_length=2, nn_thresh=nn_thresh) # matches = tracker.nn_match_two_way(desc, warped_desc, nn_) tracker.update(keypoints.T, desc.T) tracker.update(warped_keypoints.T, warped_desc.T) matches = tracker.get_matches().T mscores = tracker.get_mscores().T # mAP # matches = data['matches'] print("matches: ", matches.shape) print("mscores: ", mscores.shape) try: print("mscore max: ", mscores.max(axis=0)) print("mscore min: ", mscores.min(axis=0)) except ValueError: pass return matches, mscores
def dump_SP_match_idx(delta_ij, N_frames, dump_dir, save_npy, nn_threshes): for nn_thresh, name in zip(nn_threshes, ['good', 'all']): SP_matcher = PointTracker(max_length=2, nn_thresh=nn_thresh) for ii in tqdm(range(N_frames-delta_ij)): jj = ii + delta_ij SP_kps_ii, SP_des_ii = load_SP(dump_dir, '%06d'%ii, ext='.npy' if save_npy else '.h5') SP_kps_jj, SP_des_jj = load_SP(dump_dir, '%06d'%jj, ext='.npy' if save_npy else '.h5') matches, scores = get_SP_match_idx_pair(SP_matcher, SP_kps_ii, SP_kps_jj, SP_des_ii, SP_des_jj) dump_ij_match_quality_file = dump_dir/'SP_ij_match_quality_{}-{}'.format(ii, jj) if save_npy: # print(matches.shape, scores.shape) match_quality = np.hstack((matches, scores)) # [[x1, y1, x2, y2, dist_good, ratio_good]] np.save(dump_ij_match_quality_file+'_%s.npy'%name, match_quality) else: pass
def load_net_SP(self, name="net_SP"): config = self.config device = self.device SP_params = { "out_num_points": 2000, "patch_size": 5, "device": device, "nms_dist": 4, "conf_thresh": 0.015, } from models.model_utils import SuperPointNet_process from models.model_wrap import PointTracker from models.SuperPointNet_gauss2 import SuperPointNet_gauss2 from train_good_corr_4_vals_goodF_baseline import prepare_model SP_processer = SuperPointNet_process(**SP_params) SP_tracker = PointTracker(max_length=2, nn_thresh=1.2) net_SP = SuperPointNet_gauss2() net_SP, optimizer_SP, n_iter_SP, n_iter_val_SP = prepare_model( config, net_SP, device, n_iter=0, n_iter_val=0, net_postfix="_SP", train=False, ) logging.info("+++[Train]+++ training superpoint") ## put to class self.net_SP_helper = { "SP_processer": SP_processer, "SP_tracker": SP_tracker } self.net_dict[name] = net_SP pass
def export_descriptor(config, output_dir, args): """ # input 2 images, output keypoints and correspondence save prediction: pred: 'image': np(320,240) 'prob' (keypoints): np (N1, 2) 'desc': np (N2, 256) 'warped_image': np(320,240) 'warped_prob' (keypoints): np (N2, 2) 'warped_desc': np (N2, 256) 'homography': np (3,3) 'matches': np [N3, 4] """ from utils.loader import get_save_path from utils.var_dim import squeezeToNumpy # basic settings device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") logging.info("train on device: %s", device) with open(os.path.join(output_dir, "config.yml"), "w") as f: yaml.dump(config, f, default_flow_style=False) writer = SummaryWriter(getWriterPath(task=args.command, date=True)) save_path = get_save_path(output_dir) save_output = save_path / "../predictions" os.makedirs(save_output, exist_ok=True) ## parameters outputMatches = True subpixel = config["model"]["subpixel"]["enable"] patch_size = config["model"]["subpixel"]["patch_size"] # data loading from utils.loader import dataLoader_test as dataLoader task = config["data"]["dataset"] data = dataLoader(config, dataset=task) test_set, test_loader = data["test_set"], data["test_loader"] from utils.print_tool import datasize datasize(test_loader, config, tag="test") # model loading from utils.loader import get_module Val_model_heatmap = get_module("", config["front_end_model"]) ## load pretrained val_agent = Val_model_heatmap(config["model"], device=device) val_agent.loadModel() ## tracker tracker = PointTracker(max_length=2, nn_thresh=val_agent.nn_thresh) ###### check!!! count = 0 for i, sample in tqdm(enumerate(test_loader)): img_0, img_1 = sample["image"], sample["warped_image"] # first image, no matches # img = img_0 def get_pts_desc_from_agent(val_agent, img, device="cpu"): """ pts: list [numpy (3, N)] desc: list [numpy (256, N)] """ heatmap_batch = val_agent.run( img.to(device) ) # heatmap: numpy [batch, 1, H, W] # heatmap to pts pts = val_agent.heatmap_to_pts() # print("pts: ", pts) if subpixel: pts = val_agent.soft_argmax_points(pts, patch_size=patch_size) # heatmap, pts to desc desc_sparse = val_agent.desc_to_sparseDesc() # print("pts[0]: ", pts[0].shape, ", desc_sparse[0]: ", desc_sparse[0].shape) # print("pts[0]: ", pts[0].shape) outs = {"pts": pts[0], "desc": desc_sparse[0]} return outs def transpose_np_dict(outs): for entry in list(outs): outs[entry] = outs[entry].transpose() outs = get_pts_desc_from_agent(val_agent, img_0, device=device) pts, desc = outs["pts"], outs["desc"] # pts: np [3, N] if outputMatches == True: tracker.update(pts, desc) # save keypoints pred = {"image": squeezeToNumpy(img_0)} pred.update({"prob": pts.transpose(), "desc": desc.transpose()}) # second image, output matches outs = get_pts_desc_from_agent(val_agent, img_1, device=device) pts, desc = outs["pts"], outs["desc"] if outputMatches == True: tracker.update(pts, desc) pred.update({"warped_image": squeezeToNumpy(img_1)}) # print("total points: ", pts.shape) pred.update( { "warped_prob": pts.transpose(), "warped_desc": desc.transpose(), "homography": squeezeToNumpy(sample["homography"]), } ) if outputMatches == True: matches = tracker.get_matches() print("matches: ", matches.transpose().shape) pred.update({"matches": matches.transpose()}) print("pts: ", pts.shape, ", desc: ", desc.shape) # clean last descriptor tracker.clear_desc() filename = str(count) path = Path(save_output, "{}.npz".format(filename)) np.savez_compressed(path, **pred) # print("save: ", path) count += 1 print("output pairs: ", count)
def export_detector_homoAdapt_gpu(config, output_dir, args): """ input 1 images, output pseudo ground truth by homography adaptation. Save labels: pred: 'prob' (keypoints): np (N1, 3) """ from utils.utils import pltImshow from utils.utils import saveImg from utils.draw import draw_keypoints # basic setting task = config["data"]["dataset"] export_task = config["data"]["export_folder"] device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") logging.info("train on device: %s", device) with open(os.path.join(output_dir, "config.yml"), "w") as f: yaml.dump(config, f, default_flow_style=False) writer = SummaryWriter( getWriterPath(task=args.command, exper_name=args.exper_name, date=True) ) ## parameters nms_dist = config["model"]["nms"] # 4 top_k = config["model"]["top_k"] homoAdapt_iter = config["data"]["homography_adaptation"]["num"] conf_thresh = config["model"]["detection_threshold"] nn_thresh = 0.7 outputMatches = True count = 0 max_length = 5 output_images = args.outputImg check_exist = True ## save data save_path = Path(output_dir) save_output = save_path save_output = save_output / "predictions" / export_task save_path = save_path / "checkpoints" logging.info("=> will save everything to {}".format(save_path)) os.makedirs(save_path, exist_ok=True) os.makedirs(save_output, exist_ok=True) # data loading from utils.loader import dataLoader_test as dataLoader data = dataLoader(config, dataset=task, export_task=export_task) print("Data is: ",data) test_set, test_loader = data["test_set"], data["test_loader"] print("Size test: ",len(test_set)) print("Size loader: ",len(test_loader)) # model loading ## load pretrained try: path = config["pretrained"] print("==> Loading pre-trained network.") print("path: ", path) # This class runs the SuperPoint network and processes its outputs. fe = SuperPointFrontend_torch( config=config, weights_path=path, nms_dist=nms_dist, conf_thresh=conf_thresh, nn_thresh=nn_thresh, cuda=False, device=device, ) print("==> Successfully loaded pre-trained network.") fe.net_parallel() print(path) # save to files save_file = save_output / "export.txt" with open(save_file, "a") as myfile: myfile.write("load model: " + path + "\n") except Exception: print(f"load model: {path} failed! ") raise def load_as_float(path): return imread(path).astype(np.float32) / 255 print("Tracker") tracker = PointTracker(max_length, nn_thresh=fe.nn_thresh) with open(save_file, "a") as myfile: myfile.write("homography adaptation: " + str(homoAdapt_iter) + "\n") print("Load save file") ''' print(len(test_loader)) for i,sample in enumerate(test_loader): print("Hello world") print("Img: ",sample["image"].size()) print("Name: ",test_set[i]["name"]) print("valid mask: ",test_set[i]["valid_mask"].size()) print("valid img_2D: ",test_set[i]["image_2D"].size()) print("valid mask: ",test_set[i]["valid_mask"].size()) print("homograpgy: ",test_set[i]["homographies"].size()) print("inverse: ",test_set[i]["inv_homographies"].size()) print("scene name: ",test_set[i]["scene_name"]) print() ''' ## loop through all images for i, sample in tqdm(enumerate(test_loader)): img, mask_2D = sample["image"], sample["valid_mask"] img = img.transpose(0, 1) img_2D = sample["image_2D"].numpy().squeeze() mask_2D = mask_2D.transpose(0, 1) inv_homographies, homographies = ( sample["homographies"], sample["inv_homographies"], ) img, mask_2D, homographies, inv_homographies = ( img.to(device), mask_2D.to(device), homographies.to(device), inv_homographies.to(device), ) # sample = test_set[i] name = sample["name"][0] logging.info(f"name: {name}") if check_exist: p = Path(save_output, "{}.npz".format(name)) if p.exists(): logging.info("file %s exists. skip the sample.", name) continue print("Pass img to network") # pass through network heatmap = fe.run(img, onlyHeatmap=True, train=False) outputs = combine_heatmap(heatmap, inv_homographies, mask_2D, device=device) pts = fe.getPtsFromHeatmap(outputs.detach().cpu().squeeze()) # (x,y, prob) # subpixel prediction if config["model"]["subpixel"]["enable"]: fe.heatmap = outputs # tensor [batch, 1, H, W] print("outputs: ", outputs.shape) print("pts: ", pts.shape) pts = fe.soft_argmax_points([pts]) pts = pts[0] ## top K points pts = pts.transpose() print("total points: ", pts.shape) print("pts: ", pts[:5]) if top_k: if pts.shape[0] > top_k: pts = pts[:top_k, :] print("topK filter: ", pts.shape) ## save keypoints pred = {} pred.update({"pts": pts}) ## - make directories filename = str(name) if task == "Kitti" or "Kitti_inh": scene_name = sample["scene_name"][0] os.makedirs(Path(save_output, scene_name), exist_ok=True) path = Path(save_output, "{}.npz".format(filename)) np.savez_compressed(path, **pred) ## output images for visualization labels if output_images: img_pts = draw_keypoints(img_2D * 255, pts.transpose()) f = save_output / (str(count) + ".png") if task == "Coco" or "Kitti": f = save_output / (name + ".png") saveImg(img_pts, str(f)) count += 1 print("output pseudo ground truth: ", count) save_file = save_output / "export.txt" with open(save_file, "a") as myfile: myfile.write("Homography adaptation: " + str(homoAdapt_iter) + "\n") myfile.write("output pairs: " + str(count) + "\n") pass