Esempio n. 1
0
def get_matches(deses_SP):
    from models.model_wrap import PointTracker
    tracker = PointTracker(max_length=2, nn_thresh=1.2)
    f = lambda x: x.cpu().detach().numpy()
    # tracker = PointTracker(max_length=2, nn_thresh=1.2)
    # print("deses_SP[1]: ", deses_SP[1].shape)
    matching_mask = tracker.nn_match_two_way(f(deses_SP[0]).T, f(deses_SP[1]).T, nn_thresh=1.2)
    return matching_mask
Esempio n. 2
0
                def getMatches(data):
                    from models.model_wrap import PointTracker

                    desc = data['desc']
                    warped_desc = data['warped_desc']

                    nn_thresh = 1.2
                    print("nn threshold: ", nn_thresh)
                    tracker = PointTracker(max_length=2, nn_thresh=nn_thresh)
                    # matches = tracker.nn_match_two_way(desc, warped_desc, nn_)
                    tracker.update(keypoints.T, desc.T)
                    tracker.update(warped_keypoints.T, warped_desc.T)
                    matches = tracker.get_matches().T
                    mscores = tracker.get_mscores().T

                    # mAP
                    # matches = data['matches']
                    print("matches: ", matches.shape)
                    print("mscores: ", mscores.shape)
                    try:
                        print("mscore max: ", mscores.max(axis=0))
                        print("mscore min: ", mscores.min(axis=0))
                    except ValueError:
                        pass

                    return matches, mscores
Esempio n. 3
0
def dump_SP_match_idx(delta_ij, N_frames, dump_dir, save_npy, nn_threshes):
    for nn_thresh, name in zip(nn_threshes, ['good', 'all']):
        SP_matcher = PointTracker(max_length=2, nn_thresh=nn_thresh)

        for ii in tqdm(range(N_frames-delta_ij)):
            jj = ii + delta_ij

            SP_kps_ii, SP_des_ii = load_SP(dump_dir, '%06d'%ii, ext='.npy' if save_npy else '.h5')
            SP_kps_jj, SP_des_jj = load_SP(dump_dir, '%06d'%jj, ext='.npy' if save_npy else '.h5')

            matches, scores = get_SP_match_idx_pair(SP_matcher, SP_kps_ii, SP_kps_jj, SP_des_ii, SP_des_jj)

            dump_ij_match_quality_file = dump_dir/'SP_ij_match_quality_{}-{}'.format(ii, jj)

            if save_npy:
                # print(matches.shape, scores.shape)
                match_quality = np.hstack((matches, scores)) # [[x1, y1, x2, y2, dist_good, ratio_good]]
                np.save(dump_ij_match_quality_file+'_%s.npy'%name, match_quality)
            else:
                pass
Esempio n. 4
0
    def load_net_SP(self, name="net_SP"):
        config = self.config
        device = self.device
        SP_params = {
            "out_num_points": 2000,
            "patch_size": 5,
            "device": device,
            "nms_dist": 4,
            "conf_thresh": 0.015,
        }
        from models.model_utils import SuperPointNet_process
        from models.model_wrap import PointTracker
        from models.SuperPointNet_gauss2 import SuperPointNet_gauss2
        from train_good_corr_4_vals_goodF_baseline import prepare_model

        SP_processer = SuperPointNet_process(**SP_params)
        SP_tracker = PointTracker(max_length=2, nn_thresh=1.2)
        net_SP = SuperPointNet_gauss2()

        net_SP, optimizer_SP, n_iter_SP, n_iter_val_SP = prepare_model(
            config,
            net_SP,
            device,
            n_iter=0,
            n_iter_val=0,
            net_postfix="_SP",
            train=False,
        )

        logging.info("+++[Train]+++  training superpoint")
        ## put to class
        self.net_SP_helper = {
            "SP_processer": SP_processer,
            "SP_tracker": SP_tracker
        }
        self.net_dict[name] = net_SP
        pass
Esempio n. 5
0
def export_descriptor(config, output_dir, args):
    """
    # input 2 images, output keypoints and correspondence
    save prediction:
        pred:
            'image': np(320,240)
            'prob' (keypoints): np (N1, 2)
            'desc': np (N2, 256)
            'warped_image': np(320,240)
            'warped_prob' (keypoints): np (N2, 2)
            'warped_desc': np (N2, 256)
            'homography': np (3,3)
            'matches': np [N3, 4]
    """
    from utils.loader import get_save_path
    from utils.var_dim import squeezeToNumpy

    # basic settings
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    logging.info("train on device: %s", device)
    with open(os.path.join(output_dir, "config.yml"), "w") as f:
        yaml.dump(config, f, default_flow_style=False)
    writer = SummaryWriter(getWriterPath(task=args.command, date=True))
    save_path = get_save_path(output_dir)
    save_output = save_path / "../predictions"
    os.makedirs(save_output, exist_ok=True)

    ## parameters
    outputMatches = True
    subpixel = config["model"]["subpixel"]["enable"]
    patch_size = config["model"]["subpixel"]["patch_size"]

    # data loading
    from utils.loader import dataLoader_test as dataLoader
    task = config["data"]["dataset"]
    data = dataLoader(config, dataset=task)
    test_set, test_loader = data["test_set"], data["test_loader"]
    from utils.print_tool import datasize
    datasize(test_loader, config, tag="test")

    # model loading
    from utils.loader import get_module
    Val_model_heatmap = get_module("", config["front_end_model"])
    ## load pretrained
    val_agent = Val_model_heatmap(config["model"], device=device)
    val_agent.loadModel()

    ## tracker
    tracker = PointTracker(max_length=2, nn_thresh=val_agent.nn_thresh)

    ###### check!!!
    count = 0
    for i, sample in tqdm(enumerate(test_loader)):
        img_0, img_1 = sample["image"], sample["warped_image"]

        # first image, no matches
        # img = img_0
        def get_pts_desc_from_agent(val_agent, img, device="cpu"):
            """
            pts: list [numpy (3, N)]
            desc: list [numpy (256, N)]
            """
            heatmap_batch = val_agent.run(
                img.to(device)
            )  # heatmap: numpy [batch, 1, H, W]
            # heatmap to pts
            pts = val_agent.heatmap_to_pts()
            # print("pts: ", pts)
            if subpixel:
                pts = val_agent.soft_argmax_points(pts, patch_size=patch_size)
            # heatmap, pts to desc
            desc_sparse = val_agent.desc_to_sparseDesc()
            # print("pts[0]: ", pts[0].shape, ", desc_sparse[0]: ", desc_sparse[0].shape)
            # print("pts[0]: ", pts[0].shape)
            outs = {"pts": pts[0], "desc": desc_sparse[0]}
            return outs

        def transpose_np_dict(outs):
            for entry in list(outs):
                outs[entry] = outs[entry].transpose()

        outs = get_pts_desc_from_agent(val_agent, img_0, device=device)
        pts, desc = outs["pts"], outs["desc"]  # pts: np [3, N]

        if outputMatches == True:
            tracker.update(pts, desc)

        # save keypoints
        pred = {"image": squeezeToNumpy(img_0)}
        pred.update({"prob": pts.transpose(), "desc": desc.transpose()})

        # second image, output matches
        outs = get_pts_desc_from_agent(val_agent, img_1, device=device)
        pts, desc = outs["pts"], outs["desc"]

        if outputMatches == True:
            tracker.update(pts, desc)

        pred.update({"warped_image": squeezeToNumpy(img_1)})
        # print("total points: ", pts.shape)
        pred.update(
            {
                "warped_prob": pts.transpose(),
                "warped_desc": desc.transpose(),
                "homography": squeezeToNumpy(sample["homography"]),
            }
        )

        if outputMatches == True:
            matches = tracker.get_matches()
            print("matches: ", matches.transpose().shape)
            pred.update({"matches": matches.transpose()})
        print("pts: ", pts.shape, ", desc: ", desc.shape)

        # clean last descriptor
        tracker.clear_desc()

        filename = str(count)
        path = Path(save_output, "{}.npz".format(filename))
        np.savez_compressed(path, **pred)
        # print("save: ", path)
        count += 1
    print("output pairs: ", count)
Esempio n. 6
0
def export_detector_homoAdapt_gpu(config, output_dir, args):
    """
    input 1 images, output pseudo ground truth by homography adaptation.
    Save labels:
        pred:
            'prob' (keypoints): np (N1, 3)
    """
    from utils.utils import pltImshow
    from utils.utils import saveImg
    from utils.draw import draw_keypoints

    # basic setting
    task = config["data"]["dataset"]
    export_task = config["data"]["export_folder"]
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    logging.info("train on device: %s", device)
    with open(os.path.join(output_dir, "config.yml"), "w") as f:
        yaml.dump(config, f, default_flow_style=False)
    writer = SummaryWriter(
        getWriterPath(task=args.command, exper_name=args.exper_name, date=True)
    )

    ## parameters
    nms_dist = config["model"]["nms"]  # 4
    top_k = config["model"]["top_k"]
    homoAdapt_iter = config["data"]["homography_adaptation"]["num"]
    conf_thresh = config["model"]["detection_threshold"]
    nn_thresh = 0.7
    outputMatches = True
    count = 0
    max_length = 5
    output_images = args.outputImg
    check_exist = True

    ## save data
    save_path = Path(output_dir)
    save_output = save_path
    save_output = save_output / "predictions" / export_task
    save_path = save_path / "checkpoints"
    logging.info("=> will save everything to {}".format(save_path))
    os.makedirs(save_path, exist_ok=True)
    os.makedirs(save_output, exist_ok=True)

    # data loading
    from utils.loader import dataLoader_test as dataLoader

    data = dataLoader(config, dataset=task, export_task=export_task)
    print("Data is: ",data)
    test_set, test_loader = data["test_set"], data["test_loader"]
    print("Size test: ",len(test_set))
    print("Size loader: ",len(test_loader))
    # model loading
    ## load pretrained
    try:
        path = config["pretrained"]
        print("==> Loading pre-trained network.")
        print("path: ", path)
        # This class runs the SuperPoint network and processes its outputs.

        fe = SuperPointFrontend_torch(
            config=config,
            weights_path=path,
            nms_dist=nms_dist,
            conf_thresh=conf_thresh,
            nn_thresh=nn_thresh,
            cuda=False,
            device=device,
        )
        print("==> Successfully loaded pre-trained network.")

        fe.net_parallel()
        print(path)
        # save to files
        save_file = save_output / "export.txt"
        with open(save_file, "a") as myfile:
            myfile.write("load model: " + path + "\n")
    except Exception:
        print(f"load model: {path} failed! ")
        raise

    def load_as_float(path):
        return imread(path).astype(np.float32) / 255
    print("Tracker")
    tracker = PointTracker(max_length, nn_thresh=fe.nn_thresh)
    with open(save_file, "a") as myfile:
        myfile.write("homography adaptation: " + str(homoAdapt_iter) + "\n")
    print("Load save file")
    '''
    print(len(test_loader))
    for i,sample in enumerate(test_loader):
        print("Hello world")
        print("Img: ",sample["image"].size())
        print("Name: ",test_set[i]["name"])
        print("valid mask: ",test_set[i]["valid_mask"].size())
        print("valid img_2D: ",test_set[i]["image_2D"].size())
        print("valid mask: ",test_set[i]["valid_mask"].size())
        print("homograpgy: ",test_set[i]["homographies"].size())
        print("inverse: ",test_set[i]["inv_homographies"].size())
        print("scene name: ",test_set[i]["scene_name"])
        print()
    '''
    ## loop through all images
    for i, sample in tqdm(enumerate(test_loader)):
        img, mask_2D = sample["image"], sample["valid_mask"]
        img = img.transpose(0, 1)
        img_2D = sample["image_2D"].numpy().squeeze()
        mask_2D = mask_2D.transpose(0, 1)

        inv_homographies, homographies = (
            sample["homographies"],
            sample["inv_homographies"],
        )
        img, mask_2D, homographies, inv_homographies = (
            img.to(device),
            mask_2D.to(device),
            homographies.to(device),
            inv_homographies.to(device),
        )
        # sample = test_set[i]
        name = sample["name"][0]
        logging.info(f"name: {name}")
        if check_exist:
            p = Path(save_output, "{}.npz".format(name))
            if p.exists():
                logging.info("file %s exists. skip the sample.", name)
                continue
        print("Pass img to network")
        # pass through network
        heatmap = fe.run(img, onlyHeatmap=True, train=False)
        outputs = combine_heatmap(heatmap, inv_homographies, mask_2D, device=device)
        pts = fe.getPtsFromHeatmap(outputs.detach().cpu().squeeze())  # (x,y, prob)

        # subpixel prediction
        if config["model"]["subpixel"]["enable"]:
            fe.heatmap = outputs  # tensor [batch, 1, H, W]
            print("outputs: ", outputs.shape)
            print("pts: ", pts.shape)
            pts = fe.soft_argmax_points([pts])
            pts = pts[0]

        ## top K points
        pts = pts.transpose()
        print("total points: ", pts.shape)
        print("pts: ", pts[:5])
        if top_k:
            if pts.shape[0] > top_k:
                pts = pts[:top_k, :]
                print("topK filter: ", pts.shape)

        ## save keypoints
        pred = {}
        pred.update({"pts": pts})

        ## - make directories
        filename = str(name)
        if task == "Kitti" or "Kitti_inh":
            scene_name = sample["scene_name"][0]
            os.makedirs(Path(save_output, scene_name), exist_ok=True)

        path = Path(save_output, "{}.npz".format(filename))
        np.savez_compressed(path, **pred)

        ## output images for visualization labels
        if output_images:
            img_pts = draw_keypoints(img_2D * 255, pts.transpose())
            f = save_output / (str(count) + ".png")
            if task == "Coco" or "Kitti":
                f = save_output / (name + ".png")
            saveImg(img_pts, str(f))
        count += 1

    print("output pseudo ground truth: ", count)
    save_file = save_output / "export.txt"
    with open(save_file, "a") as myfile:
        myfile.write("Homography adaptation: " + str(homoAdapt_iter) + "\n")
        myfile.write("output pairs: " + str(count) + "\n")
    pass