def __init__(self, img, truth, is_training, batcn_norm_decay=0.997):
     self.img = img
     self.truth = truth
     self.is_training = is_training
     self.batch_norm_decay = batcn_norm_decay
     self.img_shape = tf.shape(self.img)
     backbone = Network()
     if is_training:
         self.head, self.l2_loss = backbone.inference(self.is_training, self.img)
     else:
         self.head = backbone.inference(self.is_training, self.img)
Esempio n. 2
0
 def __init__(self, img, age_labels, age_vector, is_training, batcn_norm_decay=0.997):
     self.img = img
     self.age_labels = age_labels
     self.age_vector = age_vector
     self.is_training = is_training
     self.batch_norm_decay = batcn_norm_decay
     self.img_shape = tf.shape(self.img)
     backbone = Network()
     if is_training:
         self.feats, self.pred, self.l1_loss = backbone.inference(self.is_training, self.img)
     else:
         self.feats, self.pred = backbone.inference(self.is_training, self.img)
Esempio n. 3
0
    if args.cfg:
        cfg_from_file(args.cfg)

    net = Network()
    checkpoint = torch.load(osp.abspath(args.checkpoint))
    net.load_state_dict(checkpoint["model"])
    logging.info("Loaded checkpoint from: %s" % args.checkpoint)
    net.eval()
    device = torch.device("cuda:%s" % args.gpu if args.gpu != -1 else "cpu")
    net.to(device)

    # Extract feature of the query person
    query_img = cv2.imread("imgs/query.jpg")
    query_roi = np.array([0, 0, 466, 943])  # [x1, y1, x2, y2]
    query_feat = net.inference(query_img, query_roi).view(-1, 1)

    # Get gallery images
    gallery_imgs = sorted(glob("imgs/gallery*.jpg"))

    for gallery_img in gallery_imgs:
        logging.info("Detecting %s" % gallery_img)
        detections, features = net.inference(cv2.imread(gallery_img))

        # Compute pairwise cosine similarities,
        # which equals to inner-products, as features are already L2-normed
        similarities = features.mm(query_feat).squeeze()

        # Visualize the results
        visualize_result(gallery_img, detections, similarities)
Esempio n. 4
0
        # which equals to inner-products, as features are already L2-normed
        similarities = features.mm(query_feat).squeeze()

        # Visualize the results
        visualize_result(gallery_img, detections, similarities)
    """

    #### For video file
    cap = cv2.VideoCapture("data/dataset/video/handmovewhite.mp4")

    #### For video camera
    #cap = cv2.VideoCapture(0)

    query_img = cv2.imread("data/dataset/video/query.png")
    query_roi = np.array([0, 0, 313, 733])
    query_feat = net.inference(query_img, query_roi).view(-1, 1)

    scale_percent = 50
    width = int(cap.get(3) * scale_percent / 100)
    height = int(cap.get(4) * scale_percent / 100)
    dim = (width, height)

    output_video = cv2.VideoWriter("output/output_video.avi", cv2.VideoWriter_fourcc('M','J','P','G'), 20.0, (width, height))

    no_frame = 1
    while cap.isOpened():
        ret, frame = cap.read()

        if not ret:
            print("Can't receive frame (stream end?). Exiting ...")