def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() '''m = OrderedDict() m['conv1'] = conv3x3(inplanes, planes, stride) m['bn1'] = nn.BatchNorm2d(planes) m['relu1'] = nn.ReLU(inplace=True) m['conv2'] = conv3x3(planes, planes) m['bn2'] = nn.BatchNorm2d(planes) self.group1 = nn.Sequential(m)''' '''self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes)''' self.conv1 = MaskedConv2d(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = MaskedConv2d(planes, planes) self.bn2 = nn.BatchNorm2d(planes) #self.relu = nn.Sequential(nn.ReLU(inplace=True)) self.relu = nn.ReLU(inplace=True) self.downsample = downsample
def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = MaskedConv2d(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.scale1 = ScaleLayer2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = MaskedConv2d(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.scale2 = ScaleLayer2d(planes) self.relu = nn.ReLU(inplace=True) self.downsample = downsample
def __init__(self, block, layers, num_classes=1000): self.inplanes = 64 super(ResNet_AutoML, self).__init__() self.conv1 = MaskedConv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(self.inplanes) self.scale1 = ScaleLayer2d(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AvgPool2d(kernel_size=7, stride=1, padding=0) self.fc = MaskedLinear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_()
def conv3x3(in_planes, out_planes, stride=1): # "3x3 convolution with padding" #return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) return MaskedConv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() '''m = OrderedDict() m['conv1'] = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) m['bn1'] = nn.BatchNorm2d(planes) m['relu1'] = nn.ReLU(inplace=True) m['conv2'] = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) m['bn2'] = nn.BatchNorm2d(planes) m['relu2'] = nn.ReLU(inplace=True) m['conv3'] = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) m['bn3'] = nn.BatchNorm2d(planes * 4) self.group1 = nn.Sequential(m)''' '''self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4)''' self.conv1 = MaskedConv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = MaskedConv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = MaskedConv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) #self.relu = nn.Sequential(nn.ReLU(inplace=True)) self.relu = nn.ReLU(inplace=True) self.downsample = downsample
def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = MaskedConv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.scale1 = ScaleLayer2d(planes) self.conv2 = MaskedConv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.scale2 = ScaleLayer2d(planes) self.conv3 = MaskedConv2d(planes, planes * Bottleneck.expansion, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * Bottleneck.expansion) self.scale3 = ScaleLayer2d(planes * Bottleneck.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample
def __init__(self, block, layers, num_classes=1000): self.inplanes = 64 super(ResNet, self).__init__() '''m = OrderedDict() m['conv1'] = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) m['bn1'] = nn.BatchNorm2d(64) m['relu1'] = nn.ReLU(inplace=True) m['maxpool'] = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.group1= nn.Sequential(m)''' #self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.conv1 = MaskedConv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) #self.avgpool = nn.Sequential(nn.AvgPool2d(7)) self.avgpool = nn.AvgPool2d(kernel_size=7, stride=1, padding=0) '''self.group2 = nn.Sequential( OrderedDict([ ('fc', nn.Linear(512 * block.expansion, num_classes)) ]) )''' #self.fc = nn.Linear(512 * block.expansion, num_classes) self.fc = MaskedLinear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( #nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), MaskedConv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers)