Esempio n. 1
0
    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        '''m = OrderedDict()
        m['conv1'] = conv3x3(inplanes, planes, stride)
        m['bn1'] = nn.BatchNorm2d(planes)
        m['relu1'] = nn.ReLU(inplace=True)
        m['conv2'] = conv3x3(planes, planes)
        m['bn2'] = nn.BatchNorm2d(planes)
        self.group1 = nn.Sequential(m)'''
        '''self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)'''

        self.conv1 = MaskedConv2d(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = MaskedConv2d(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)

        #self.relu = nn.Sequential(nn.ReLU(inplace=True))
        self.relu = nn.ReLU(inplace=True)

        self.downsample = downsample
Esempio n. 2
0
    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()

        self.conv1 = MaskedConv2d(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.scale1 = ScaleLayer2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = MaskedConv2d(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.scale2 = ScaleLayer2d(planes)

        self.relu = nn.ReLU(inplace=True)

        self.downsample = downsample
Esempio n. 3
0
    def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(ResNet_AutoML, self).__init__()

        self.conv1 = MaskedConv2d(3,
                                  self.inplanes,
                                  kernel_size=7,
                                  stride=2,
                                  padding=3,
                                  bias=False)
        self.bn1 = nn.BatchNorm2d(self.inplanes)
        self.scale1 = ScaleLayer2d(self.inplanes)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)

        self.avgpool = nn.AvgPool2d(kernel_size=7, stride=1, padding=0)

        self.fc = MaskedLinear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
Esempio n. 4
0
def conv3x3(in_planes, out_planes, stride=1):
    # "3x3 convolution with padding"
    #return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
    return MaskedConv2d(in_planes,
                        out_planes,
                        kernel_size=3,
                        stride=stride,
                        padding=1,
                        bias=False)
Esempio n. 5
0
    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        '''m  = OrderedDict()
        m['conv1'] = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        m['bn1'] = nn.BatchNorm2d(planes)
        m['relu1'] = nn.ReLU(inplace=True)
        m['conv2'] = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        m['bn2'] = nn.BatchNorm2d(planes)
        m['relu2'] = nn.ReLU(inplace=True)
        m['conv3'] = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        m['bn3'] = nn.BatchNorm2d(planes * 4)
        self.group1 = nn.Sequential(m)'''
        '''self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)'''

        self.conv1 = MaskedConv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = MaskedConv2d(planes,
                                  planes,
                                  kernel_size=3,
                                  stride=stride,
                                  padding=1,
                                  bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = MaskedConv2d(planes,
                                  planes * 4,
                                  kernel_size=1,
                                  bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)

        #self.relu = nn.Sequential(nn.ReLU(inplace=True))
        self.relu = nn.ReLU(inplace=True)

        self.downsample = downsample
Esempio n. 6
0
    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()

        self.conv1 = MaskedConv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.scale1 = ScaleLayer2d(planes)
        self.conv2 = MaskedConv2d(planes,
                                  planes,
                                  kernel_size=3,
                                  stride=stride,
                                  padding=1,
                                  bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.scale2 = ScaleLayer2d(planes)
        self.conv3 = MaskedConv2d(planes,
                                  planes * Bottleneck.expansion,
                                  kernel_size=1,
                                  bias=False)
        self.bn3 = nn.BatchNorm2d(planes * Bottleneck.expansion)
        self.scale3 = ScaleLayer2d(planes * Bottleneck.expansion)

        self.relu = nn.ReLU(inplace=True)

        self.downsample = downsample
Esempio n. 7
0
    def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(ResNet, self).__init__()
        '''m = OrderedDict()
        m['conv1'] = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        m['bn1'] = nn.BatchNorm2d(64)
        m['relu1'] = nn.ReLU(inplace=True)
        m['maxpool'] = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.group1= nn.Sequential(m)'''

        #self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.conv1 = MaskedConv2d(3,
                                  64,
                                  kernel_size=7,
                                  stride=2,
                                  padding=3,
                                  bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)

        #self.avgpool = nn.Sequential(nn.AvgPool2d(7))
        self.avgpool = nn.AvgPool2d(kernel_size=7, stride=1, padding=0)
        '''self.group2 = nn.Sequential(
            OrderedDict([
                ('fc', nn.Linear(512 * block.expansion, num_classes))
            ])
        )'''
        #self.fc = nn.Linear(512 * block.expansion, num_classes)
        self.fc = MaskedLinear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
Esempio n. 8
0
    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                #nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
                MaskedConv2d(self.inplanes,
                             planes * block.expansion,
                             kernel_size=1,
                             stride=stride,
                             bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)