from eICU_preprocessing.split_train_test import create_folder from models.run_lstm import BaselineLSTM from models.initialise_arguments import initialise_lstm_arguments from models.final_experiment_scripts.best_hyperparameters import best_lstm if __name__ == '__main__': c = initialise_lstm_arguments() c['exp_name'] = 'StandardLSTM' c['dataset'] = 'MIMIC' c['task'] = 'mortality' c = best_lstm(c) log_folder_path = create_folder('models/experiments/final/MIMIC/mortality', c.exp_name) baseline_lstm = BaselineLSTM( config=c, n_epochs=c.n_epochs, name=c.exp_name, base_dir=log_folder_path, explogger_kwargs={'folder_format': '%Y-%m-%d_%H%M%S{run_number}'}) baseline_lstm.run()
import os from models.run_lstm import BaselineLSTM from models.initialise_arguments import initialise_lstm_arguments from models.final_experiment_scripts.best_hyperparameters import best_lstm if __name__ == '__main__': c = initialise_lstm_arguments() c['exp_name'] = 'StandardLSTM' c['dataset'] = 'eICU' c['task'] = 'multitask' c = best_lstm(c) log_folder_path = 'models/experiments/final/{}/{}/{}'.format( c['dataset'], c['task'], c['exp_name']) sub_directories = next(os.walk(log_folder_path))[1] for sub_dir in sub_directories: baseline_lstm = BaselineLSTM( config=c, n_epochs=c.n_epochs, name=c.exp_name, base_dir=log_folder_path, explogger_kwargs={'folder_format': '%Y-%m-%d_%H%M%S{run_number}'}, resume='{}/{}'.format(log_folder_path, sub_dir)) baseline_lstm.run_test()