Esempio n. 1
0
 def __init__(self, word_emb, n_layer, n_head, d_model, d_head, d_inner, dropout, drop_att, pre_layer_norm, device):
     super(TransformerEncoder, self).__init__()
     self.position_emb = PositionalEmbedding(demb=d_model)
     self.word_emb = word_emb
     self.layers = nn.ModuleList([
         EncoderLayer(d_model, d_inner, n_head, d_head, dropout, drop_att, pre_layer_norm, avg=False, rel=False)
         for _ in range(n_layer)])
     self.device = device
Esempio n. 2
0
 def __init__(self, d_model, d_inner, n_head, d_head, dropout, drop_att, pre_layer_norm, avg, rel):
     super(DecoderLayer, self).__init__()
     self.slf_attn = MixMultiHeadAttention(n_head, d_model, d_head, dropout, drop_att, pre_layer_norm, avg, rel)
     self.enc_attn = MixMultiHeadAttention(n_head, d_model, d_head, dropout, drop_att, pre_layer_norm, avg, rel)
     self.pos_ffn = PositionWiseFF(d_model, d_inner, dropout)
     if rel:
         self.pos_emb = PositionalEmbedding(demb=d_model)
         self.r_w_bias = nn.Parameter(torch.Tensor(n_head, d_head))
         self.r_r_bias = nn.Parameter(torch.Tensor(n_head, d_head))
         nn.init.normal_(self.r_w_bias, 0.0, 0.1)
         nn.init.normal_(self.r_r_bias, 0.0, 0.1)
     self.rel = rel
Esempio n. 3
0
 def __init__(self, word_emb, n_head, d_model, d_head, d_inner, dropout, drop_att, pre_layer_norm, device):
     super(RelHDSADecoder, self).__init__()
     self.word_emb = word_emb
     self.pos_emb = PositionalEmbedding(demb=d_model)
     self.prior_layer = DecoderLayer(d_model, d_inner, len(domains), d_head, dropout, drop_att,
                                     pre_layer_norm, avg=True, rel=True)
     self.middle_layer = DecoderLayer(d_model, d_inner, len(functions), d_head, dropout, drop_att,
                                      pre_layer_norm, avg=True, rel=True)
     self.post_layer = DecoderLayer(d_model, d_inner, len(arguments), d_head, dropout, drop_att,
                                    pre_layer_norm, avg=True, rel=True)
     self.final_layer = DecoderLayer(d_model, d_inner, n_head, d_head, dropout, drop_att,
                                     pre_layer_norm, avg=False, rel=True)
     self.device = device