def forward(self, dist_a, dist_b, x, y, z, cls, target, ids):
        if not cls.volatile:
            cls.register_hook(
                lambda grad: dprint('cls norm: {}', grad.data.norm()))

        inds1 = [i for i, t in enumerate(target) if t.item() > 0]
        inds2 = [i for i, t in enumerate(target) if not t.item() > 0]
        dprint('#triplets: {} \t #class: {}', len(inds1), len(inds2))
        fix = hack(inds1, inds2)

        # ActorObserverLoss
        final, weights = [], torch.zeros(x.shape[0], )
        if len(inds1) > 0:
            vars1 = var_subset([dist_a, dist_b, x, y, z, target], inds1)
            vars1 += [[ids[i] for i in inds1]]
            f, w = super(ActorObserverLossWithClassifier, self).forward(*vars1)
            final.append(f)
            for i, ii in enumerate(inds1):
                weights[ii] = w[i]

        # Classification loss
        if len(inds2) > 0:
            vars2 = var_subset([cls, -target.long()], inds2)
            clsloss = self.clsloss(*vars2)
            f = self.clsweight * clsloss.sum()
            final.append(f)

        final[0], weights = fix(final[0], weights)

        dprint('losses: {}', ' '.join(['{}'.format(r.item()) for r in final]))
        return sum(final), weights
Esempio n. 2
0
 def base(self, x, y, z):
     base_x = self.basenet(x)
     base_y = self.basenet(y)
     base_z = self.basenet(z)
     dist_a = F.pairwise_distance(base_x, base_y, 2).view(-1)
     dist_b = F.pairwise_distance(base_y, base_z, 2).view(-1)
     dprint('fc7 norms: {} \t {} \t {}', base_x.data.norm(), base_y.data.norm(), base_z.data.norm())
     dprint('pairwise dist means: {} \t {}', dist_a.data.mean(), dist_b.data.mean())
     return base_x, base_y, base_z, dist_a, dist_b
Esempio n. 3
0
 def forward(self, x, y, z):
     """ assuming:
         x: first person positive
         y: third person
         z: first person negative
     """
     base_x = self.basenet(x)
     base_y = self.basenet(y)
     w_x = self.firstpos_fc(base_x).view(-1) * torch.exp(self.firstpos_scale)
     w_y = self.third_fc(base_y).view(-1) * torch.exp(self.third_scale)
     dprint('fc7 norms: {}\t {}', base_x.data.norm(), base_y.data.norm())
     self.verbose()
     return base_x, base_y, w_x, w_y
 def forward(self, x):
     """ assuming:
         x: first person positive
         y: third person
         z: first person negative
     """
     base_x = self.basenet(x)
     y = self.classifier(base_x)
     w_x = self.firstpos_fc(base_x).view(-1) * torch.exp(
         self.firstpos_scale)
     w_z = self.firstneg_fc(base_x).view(-1) * torch.exp(
         self.firstneg_scale)
     dprint('fc7 norms: {}', base_x.data.norm())
     self.verbose()
     return y, w_x, w_z
    def forward(self, dist_a, dist_b, x, y, z, cls, target, ids):
        if not cls.volatile:
            cls.register_hook(lambda grad: dprint('cls norm: {}', grad.data.norm()))

        inds1 = [i for i, t in enumerate(target) if t.data[0] > 0]
        inds2 = [i for i, t in enumerate(target) if not t.data[0] > 0]
        dprint('#triplets: {} \t #class: {}', len(inds1), len(inds2))

        # Fix for avoiding degenerate autograd graph building
        # that causes out of gpu memory
        correction = 1.0
        if len(inds1) == 0:
            inds1 = [0]
            correction = 0.0

        # ActorObserverLoss
        final, weights = [], torch.zeros(x.shape[0],)
        if len(inds1) > 0:
            vars1 = var_subset([dist_a, dist_b, x, y, z, target], inds1)
            vars1 += [[ids[i] for i in inds1]]
            f, w = super(ActorObserverLossAllWithClassifier, self).forward(*vars1)
            final.append(f)
            for i, ii in enumerate(inds1):
                weights[ii] = w[i]

        # fix
        final[0] *= correction
        weights *= correction

        correctioncls = 1.0
        if len(inds2) == 0:
            inds2 = [0]
            correctioncls = 0.0

        # Classification loss
        if len(inds2) > 0:
            vars2 = var_subset([cls, -target.long()], inds2)
            clsloss = self.clsloss(*vars2)
            f = self.clsweight * clsloss.sum()
            final.append(f)

        # fix
        final[1] *= correctioncls

        dprint('losses: {}', ' '.join(['{}'.format(r.data[0]) for r in final]))
        return sum(final), weights
Esempio n. 6
0
 def verbose(self):
     dprint('scales:{}\t{}\t{}',
            math.exp(self.firstpos_scale.data[0]),
            math.exp(self.third_scale.data[0]),
            math.exp(self.firstneg_scale.data[0]))