Esempio n. 1
0
def train():
    log_dir = os.path.join(args.log_dir, args.dataset)
    if not os.path.exists(log_dir):
        os.makedirs(log_dir)
    writer = SummaryWriter(log_dir)
    saved_checkpoint_dir = os.path.join(args.checkpoint_dir, args.dataset)
    if not os.path.exists(saved_checkpoint_dir):
        os.makedirs(saved_checkpoint_dir)
    for epoch in range(args.epoches + 1):
        outputs = model(adj, features)
        loss = get_loss(outputs, y_train, train_mask)
        val_loss = get_loss(outputs, y_val, val_mask).detach().numpy()
        model.eval()
        outputs = model(adj, features)
        train_accuracy = get_accuracy(outputs, y_train, train_mask)
        val_accuracy = get_accuracy(outputs, y_val, val_mask)
        model.train()
        writer.add_scalars('loss', {
            'train_loss': loss.detach().numpy(),
            'val_loss': val_loss
        }, epoch)
        writer.add_scalars('accuracy', {
            'train_ac': train_accuracy,
            'val_ac': val_accuracy
        }, epoch)
        if epoch % args.log_interval == 0:
            print(
                "Epoch: %d, train loss: %f, val loss: %f, train ac: %f, val ac: %f"
                % (epoch, loss.detach().numpy(), val_loss, train_accuracy,
                   val_accuracy))
        if epoch % args.checkpoint_interval == 0:
            torch.save(
                model.state_dict(),
                os.path.join(saved_checkpoint_dir, "gcn_%d.pth" % epoch))
        optimizer.zero_grad()  # Important
        loss.backward()
        optimizer.step()
    writer.close()
def train(args):
    set_random_seed(42)
    if(args.model=='lstm_diff'):
        model = ULSTMNet(count_channels(args.channels), 1, args.image_size)
    elif(args.model=='lstm_decoder'):
        model = Unet_LstmDecoder(count_channels(args.channels), all_masks=args.allmasks)
    else:
        print('Unknown LSTM model. Return to the default model.')
        model = ULSTMNet(count_channels(args.channels), 1, args.image_size)
    
    if torch.cuda.is_available(): model.cuda()
    print('Loading model')

    model, device = UtilsFactory.prepare_model(model)
    print(device)

    optimizer = get_optimizer(args.optimizer, args.lr, model)
    criterion = get_loss(args.loss)    
    
    scheduler = torch.optim.lr_scheduler.MultiStepLR(
        optimizer, milestones=[10, 40, 80, 150, 300], gamma=0.2
    )

    save_path = os.path.join(
        args.logdir,
        args.name
    )
    
    os.system(f"mkdir {save_path}")

    train_df = pd.read_csv(args.train_df)
    val_df = pd.read_csv(args.val_df)

    train_dataset = LstmDataset(args.neighbours, train_df, 'train',args.channels, args.dataset_path, args.image_size, args.batch_size, args.allmasks)
    valid_dataset = LstmDataset(args.neighbours, val_df, 'valid',args.channels, args.dataset_path, args.image_size, args.batch_size, args.allmasks)

    train_loader = DataLoader(train_dataset, batch_size=args.batch_size, 
        shuffle=sampler is None, num_workers=args.num_workers, sampler=sampler(train_df))
    valid_loader = DataLoader(valid_dataset, batch_size=1, 
        shuffle=False, num_workers=args.num_workers)

    loaders = collections.OrderedDict()

    loaders['train'] = train_loader
    loaders['valid'] = valid_loader

    runner = SupervisedRunner()
    if args.model_weights_path:
        checkpoint = torch.load(args.model_weights_path, map_location='cpu')
        model.load_state_dict(checkpoint['model_state_dict'])
    
    runner.train(
        model=model,
        criterion=criterion,
        optimizer=optimizer,
        scheduler=scheduler,
        loaders=loaders,
        callbacks=[
            DiceCallback()
        ],
        logdir=save_path,
        num_epochs=args.epochs,
        verbose=True
    )

    infer_loader = collections.OrderedDict([('infer', loaders['valid'])])
    runner.infer(
        model=model,
        loaders=infer_loader,
        callbacks=[
            CheckpointCallback(resume=f'{save_path}/checkpoints/best.pth'),
            InferCallback()
        ],
    )

    '''
Esempio n. 3
0
def train(args):
    set_random_seed(42)
    model = get_model(args.network, args.classification_head)
    print('Loading model')

    model.encoder.conv1 = nn.Conv2d(count_channels(args.channels) *
                                    args.neighbours,
                                    64,
                                    kernel_size=(7, 7),
                                    stride=(2, 2),
                                    padding=(3, 3),
                                    bias=False)

    model, device = UtilsFactory.prepare_model(model)

    train_df = pd.read_csv(args.train_df).to_dict('records')
    val_df = pd.read_csv(args.val_df).to_dict('records')

    ds = Dataset(args.channels, args.dataset_path, args.image_size,
                 args.batch_size, args.num_workers, args.neighbours,
                 args.classification_head)
    loaders = ds.create_loaders(train_df, val_df)

    save_path = os.path.join(args.logdir, args.name)

    optimizer = get_optimizer(args.optimizer, args.lr, model)

    if not args.classification_head:
        scheduler = torch.optim.lr_scheduler.MultiStepLR(
            optimizer, milestones=[10, 40, 80, 150, 300], gamma=0.1)

        criterion = get_loss(args.loss)

        runner = SupervisedRunner()
        if args.model_weights_path:
            checkpoint = torch.load(args.model_weights_path,
                                    map_location='cpu')
            model.load_state_dict(checkpoint['model_state_dict'])

        runner.train(model=model,
                     criterion=criterion,
                     optimizer=optimizer,
                     scheduler=scheduler,
                     loaders=loaders,
                     callbacks=[DiceCallback()],
                     logdir=save_path,
                     num_epochs=args.epochs,
                     verbose=True)

        infer_loader = collections.OrderedDict([('infer', loaders['valid'])])
        runner.infer(
            model=model,
            loaders=infer_loader,
            callbacks=[
                CheckpointCallback(resume=f'{save_path}/checkpoints/best.pth'),
                InferCallback()
            ],
        )
    else:
        criterion = get_loss('multi')
        net = Model(model,
                    optimizer,
                    criterion,
                    batch_metrics=[
                        classification_head_accuracy, segmentation_head_dice
                    ])
        net = net.to(device)
        net.fit_generator(loaders['train'],
                          loaders['valid'],
                          epochs=args.epochs,
                          callbacks=[
                              ModelCheckpoint(
                                  f'{save_path}/checkpoints/best.pth', ),
                              MultiStepLR(milestones=[10, 40, 80, 150, 300],
                                          gamma=0.1)
                          ])
Esempio n. 4
0
def train(args):
    set_random_seed(42)
    if(args.model=='unet'):
        model = Unet(count_channels(args.channels)*args.neighbours, 1)
    elif(args.model=='unet3d'):
        model = Unet3D(count_channels(args.channels), 1)
    elif(args.model=='siamdiff'):
        model = SiamUnet_diff(count_channels(args.channels), 1)
    elif(args.model=='siamconc'):
        model = SiamUnet_conc(count_channels(args.channels), 1)
    else:
        print('Unknown siamese model. Return to the default model.')
        model = Unet(count_channels(args.channels)*2, 1)
    if torch.cuda.is_available(): model.cuda()
    print('Loading model')

    model, device = UtilsFactory.prepare_model(model)
    print(device)

    optimizer = get_optimizer(args.optimizer, args.lr, model)
    criterion = get_loss(args.loss)    
    
    scheduler = torch.optim.lr_scheduler.MultiStepLR(
        optimizer, milestones=[10, 40, 80, 150, 300], gamma=0.2
    )

    save_path = os.path.join(
        args.logdir,
        args.name
    )
    
    os.system(f"mkdir {save_path}")
    
    train_df = pd.read_csv(args.train_df)
    val_df = pd.read_csv(args.val_df)
    test_df = pd.read_csv(args.test_df)

    train_dataset = SiamDataset(args.neighbours, train_df, 'train',args.channels, args.dataset_path, args.image_size, args.batch_size)
    valid_dataset = SiamDataset(args.neighbours, val_df, 'valid',args.channels, args.dataset_path, args.image_size, args.batch_size)
    test_dataset = SiamDataset(args.neighbours, test_df, 'test',args.channels, args.dataset_path, args.image_size, args.batch_size)

    train_loader = DataLoader(train_dataset, batch_size=args.batch_size, 
        shuffle=sampler is None, num_workers=args.num_workers, sampler=sampler(train_df))
    valid_loader = DataLoader(valid_dataset, batch_size=1, 
        shuffle=False, num_workers=args.num_workers)
    test_loader = DataLoader(test_dataset, batch_size=1,
        shuffle=False, num_workers=args.num_workers)

    if args.model_weights_path:
        checkpoint = torch.load(args.model_weights_path, map_location='cpu')
        model.load_state_dict(checkpoint['model_state_dict'])

    # model training    
    model_trainer = Trainer(model, args.lr, args.batch_size, args.epochs, 
                            criterion, optimizer, scheduler,  
                            train_loader, valid_loader, test_loader, 
                            save_path)
    if args.mode=='train':
        model_trainer.start()
    elif args.mode=='eval':
        model_trainer.evaluate(args.image_size, args.channels,
            DataLoader(train_dataset, batch_size=1, shuffle=False, num_workers=args.num_workers),
            phase='train')
        model_trainer.evaluate(args.image_size, args.channels,
            DataLoader(valid_dataset, batch_size=1, shuffle=False, num_workers=args.num_workers),
            phase='val')
        model_trainer.evaluate(args.image_size, args.channels,
            DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=args.num_workers),
            phase='test')
    else:
        print(f'Unknown mode {args.mode}.')