for i in columns: sheets[ind].write(0,k,i) k+=1 for mod in range(model_no): sheets[ind].write(mod+1,0,'model_{}'.format(mod)) for train_index,test_index in skf.split(atribute, output): lst = [ models.Fair_rew_RF(un_gr, pr_gr), models.FAD_class(input_size = inp, num_layers_z = 2, num_layers_y = 2, step_z = 1.5, step_y = 1.5), models.FAIR_scalar_class(input_size = inp, num_layers_w = 2, step_w = 1.5, num_layers_A = 1, step_A = 1.5, num_layers_y = 2, step_y = 1.5), models.FAIR_betaSF_class(input_size = inp, num_layers_w = 2, step_w = 1.5, num_layers_A = 1, step_A = 1.5, num_layers_y = 2, step_y = 1.5), models.FAIR_Bernoulli_class(input_size = inp, num_layers_w = 2, step_w = 1.5, num_layers_A = 1, step_A = 1.5, num_layers_y = 2, step_y = 1.5), models.FAIR_betaREP_class(input_size = inp, num_layers_w = 2, step_w = 1.5, num_layers_A = 1, step_A = 1.5, num_layers_y = 2, step_y = 1.5), models.FAD_prob_class(flow_length = 2, no_sample = 32, input_size = inp, num_layers_y = 2, step_y = 2, step_z = 2)] x_train, x_test = atribute.iloc[train_index,:], atribute.iloc[test_index,:] y_train, y_test = output.iloc[train_index], output.iloc[test_index] A_train, A_test = sensitive.iloc[train_index], sensitive.iloc[test_index] data_train, data_test = data.iloc[train_index,:], data.iloc[test_index,:]
models.FAD_class(input_size=inp, num_layers_z=3, num_layers_y=2, step_z=2, step_y=2), models.FAIR_scalar_class(input_size=inp, num_layers_w=2, step_w=2, num_layers_A=2, step_A=2, num_layers_y=3, step_y=2), models.FAIR_betaSF_class(input_size=inp, num_layers_w=2, step_w=2, num_layers_A=2, step_A=2, num_layers_y=3, step_y=2), models.FAIR_Bernoulli_class(input_size=inp, num_layers_w=2, step_w=2, num_layers_A=2, step_A=2, num_layers_y=3, step_y=2), models.FAIR_betaREP_class(input_size=inp, num_layers_w=2, step_w=2, num_layers_A=2, step_A=2,